

Application Note
V2.0 2009-03-20

Microcontrol lers

8-bit
Microcontroller

AP08071
Hardware and Software Description

DriveMonitor

Edition 2009-03-20

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

AP08071

DriveMonitor

Application Note V2.0, 2009-03-20

DriveMonitor

Revision History: V2.0, 2009-03-20

Previous Version(s):

V1.0

Page Subjects (major changes since last revision)

Update from Drive Monitor Software V5.1 to V6.0

3 Figure 3

4 - 5 Section 2.2

Additional Chapter

13 - 19 Chapter 3: Target Firmware

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

ipdoc@infineon.com

mailto:mcdocu.comments@infineon.com

AP08071

DriveMonitor

Table of Contents

Application Note 1 V2.0, 2009-03-20

1 Overview . 2

2 PC Host Software (GUI) . 4

2.1 JTAG Toolbar . 4

2.2 CAN Toolbar . 4

2.3 CAN Control Window . 5

2.4 Customizing the CAN Control Window . 7

2.4.1 Group Entries . 7

2.4.2 Display Field . 8

2.4.3 Buttons . 9

2.4.4 Status Flags . 9

2.4.5 Progress Bars . 10

2.4.6 Oscilloscope . 11

2.5 Troubleshooting . 12

2.5.1 Problems with the Target . 12

2.5.2 Problems with the DriveMonitor USB Stick . 12

2.5.3 Problems with the Host Computer . 14

3 Target Firmware . 15

3.1 Program Flow . 15

3.2 Command Structure . 16

3.3 Receiving a CAN Message . 16

3.3.1 Command Execution . 16

3.3.2 Command SET . 17

3.3.3 Command GET . 17

3.3.4 Start, Stop and Ramp Down Buttons . 18

3.3.5 Button Scope . 18

3.4 Transmitting a CAN Message . 19

3.4.1 Oscilloscope and Progress Bar . 20

3.4.2 Status Flags and Display Fields . 20

3.4.3 Command GET . 21

3.4.4 Example for Get and Set Commands in Grouped Entries 22

4 Hardware Description . 23

4.1 USB Interface . 23

4.2 CAN Microcontroller XC886CM . 25

4.3 CAN Transceiver and Target Connector . 26

4.4 PCB Layout . 27

Table of Contents

AP08071

DriveMonitor

Overview
1 Overview

The DriveMonitor is a USB stick (see Figure 1) providing JTAG, Virtual COM (VCOM)

and CAN interfaces in one device. The DriveMonitor USB stick is designed to be used

in combination with Infineon DriveCards. DriveCards are small microcontroller

evaluation boards with a standard connector to power inverter boards, and a digitally

isolated debug interface. A JTAG interface is used for software download and OCDS

debugging, while a CAN connection is also provided for real time monitoring and

parameter setup when the application is running.

Figure 1 DriveMonitor USB Stick

Figure 2 shows the block diagram of the DriveMonitor.

Figure 2 Block Diagram of DriveMonitor

The USB 2.0 compliant interface device (FT2232) provides a JTAG and a VCOM port.

Both the JTAG and the VCOM port are directly connected to the 2 x 8-pin target

connector. The VCOM port is additionally connected to the CAN microcontroller

XC886CM. A driver application can convert CAN message objects in UART protocol,

and vice-versa. As a result, PC software is able to monitor and generate CAN messages

via USB and UART.

The DriveMonitor can be used for the CAN message monitoring/generating task. After

clicking the connect button, a small driver software package is downloaded to the

BlockDiagram.emf

ta
rg

e
t
c
o

n
n

e
c
to

r

2
x
8
 p

in

VCOM

CAN

JTAG

5V

USB
FTDI

FT2232

VCOM

JTAG

CAN MCU
XC886 CM

CAN
TLE 6250 G

V33
Application Note 2 V2.0, 2009-03-20

AP08071

DriveMonitor

Overview
DriveMonitor USB stick. CAN messages can then be sent to and received from the target

device.

Figure 3 shows a screen shot of the DriveMonitor software V6.0.

Figure 3 Screenshots of the DriveMonitor V6.0 Software

The main window of the DriveMonitor Software provides access to the target via the CAN

control window and the JTAG control toolbar. The CAN control window is fully

configurable and can be customized according to the target software. An oscilloscope

window is also available to monitor up to three signals in real-time.

The DriveMonitor USB stick provides data rates up to 500 kBaud and a data throughput

of about 300 kBaud. Because of the fast data streaming capability, the DriveMonitor is

an ideal tool for motor control debugging.
Application Note 3 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
2 PC Host Software (GUI)

The DriveMonitor Software V6.0 provides a versatile GUI based on CAN messages, as

well as a low-level JTAG tool. The GUI and JTAG tool are described in detail in this

section.

2.1 JTAG Toolbar

Figure 4 JTAG Tool Control

The JTAG Tool Control provides the following features:

• Connect: The DriveMonitor software connects as client to the Device Access Server

(DAS).

• Load: After pressing the Load button, a hex-file can be selected for download to the

target system. After download, the code is verified automatically.

• Reset: A hardware reset is performed on the target system and the MCU is halted.

• Halt: The target system is halted and the program counter address is shown.

• Run: The target system continues operation after a halt or reset.

• Step: The target system moves one step further and the program counter address is

shown.

2.2 CAN Toolbar

Figure 5 CAN Tool Control

The CAN Tool Control provides the following features:

• Connect

– After selecting the connect button, the driver firmware is downloaded to the CAN

controller XC886CM and placed on the DriveMonitor USB stick. After successful

download, the button changes to a green light.

• Download via CAN

– A CAN Boot Strap Loader (BSL) is provided on the Infineon microcontroller

devices. After clicking the CAN download button, a hex-file can be selected for

download to the target system. After download, the code is verified automatically.

• Open CAN Control Window

– The CAN Control Window is described in Section 2.3.
Application Note 4 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
• Open CAN Control Editor

– The CAN Control Editor is used to customize the CAN Control Window, and is

described in Section 2.4.

• CAN Control Settings

– There are up to four different settings for the CAN Control window available. The

settings can be configured individually and can be switched by choosing one of the

four buttons in the CAN toolbar. The currently visible setup is indicated by the bold

button. This allows very flexible use of the oscilloscope and the display fields for

different states of the application; for example, at startup, at runtime, and at off-

state.

2.3 CAN Control Window

The CAN Control Window provides six elements to display and setup data for a target

application by using the CAN bus protocol:

• Group Entries

– 3 x 4 hexadecimal or floating point values can be sent to (set) or read from (get)

the target.

• Display Field

– Six hexadecimal or floating point values can be displayed.

• Buttons

– Eight buttons can execute state machine commands to the target.

• Status Flags

– Sixteen status flags can show bitwise information.

• Progress Bar

– Two progress bars can show hexadecimal or floating point values

• Oscilloscope

– Three hexadecimal or floating point values can be displayed in a software

oscilloscope.

All values can be 8 to 32 bits wide and are scaled by a given factor.

In Section 2.4, the details of the protocol are described and the extent of the flexibility

becomes apparent.

Figure 6 shows an example of a CAN control window, which uses some of the available

elements.
Application Note 5 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
Figure 6 Example of a CAN Control Window

The CAN control window is designed to be used as a real-time communication channel

to a real-time system such as motor control.

The example in Figure 6 shows the control used for an FOC algorithm implemented on

XC886CM:

• The group entries give access to the PI controllers of the algorithm

• The display field shows the actual speed

• The buttons are used to start and stop the motor

• The status flags show control specific information

Group Entries

Display Fields

Buttons

Status Flags
Application Note 6 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
2.4 Customizing the CAN Control Window

The CAN Control Window can be customized by defining details for the available

elements. The CAN communication is based on a CAN frame of eight bytes, with the

following specification:

2.4.1 Group Entries

There are 12 group entries available in three groups, with four entries per group. A title

can be defined for each group, and a label, unit and radix can be defined for each entry.

The value from the group entry field is divided with a Scale Factor before being sent via

a CAN message.

Figure 7 CAN Control Window: Group Entries

Command D0 D1 D2 D3 D4 D5 D6 D7 CAN

ID

Commands from DriveMonitor to target

Set integer adrL adrH valL valH 0 0 sze SET 5

Get integer adrL adrH valL valH 0 0 sze GET 5

Button 0 0 0 0 0 0 0 BUT 5

Set Beams green 0 pink 0 yellow 0 0 SB 5

Commands from target to DriveMonitor

Match adrL adrH xx xx xx xx xx xx 57

Display status flags D2 D3 D4 D5 D6 D7 7

Oscilloscope D0 D1 D2 D3 D4 D5 D6 D7 77
Application Note 7 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
All group entries are transmitted to the target by pressing the <set> button.

In order to prevent data overflow at the target, a transmit delay (TX interval) can be

specified.

Selecting the <get> button sends “get” commands for all group entry fields to the target.

The target responds to each get command with a match response which contains the

data.

2.4.2 Display Field

There are six display fields available. A label, unit and radix can be defined for each field.

The received value from the CAN message is multiplied with a Scale Factor and is shown

in the display field.

Figure 8 CAN Control Window: Display Field
Application Note 8 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
2.4.3 Buttons

Eight buttons are available for free configuration.

For each button a label, the transmit CAN ID, and the data frame can be configured.

Figure 9 CAN Control Window: Buttons

2.4.4 Status Flags

16 status flags are available. They can be received in the same frame together with

display data or oscilloscope data.

A label, CAN ID and Match data can be specified on byte level. The bitwise masking is

taken from the masking data information. The flag is set when the logical AND

combination of received data and masking data is not 0.
Application Note 9 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
Figure 10 CAN Control Window: Status Flags

2.4.5 Progress Bars

Two progress bars are available. They are handled like display fields, but are displayed

in a progress bar. The minimum and maximum level (lower range and upper range) can

be specified.

Figure 11 CAN Control Window: Progress Bar
Application Note 10 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
2.4.6 Oscilloscope

A virtual oscilloscope with three beams is available.

Figure 12 CAN Control Window: Oscilloscope

Oscilloscope GUI DLL

The virtual oscilloscope is realized by a freeware DLL.

http://www.oscilloscope-lib.com/

The author of this DLL calls it a “Universal Real-Time Software Oscilloscope GUI DLL

Library for data acquisition and logging, computer simulation and debugging programs”

The library makes it possible to show on the beams of the oscilloscope over a million

quantization steps of signal per second (on the Pentium III machine) – less than one

micro-second is sufficient for one signal sample. This software can be used for linking to

real-time controlling programs as there is no delay in relaying data to the oscilloscope.

The data is instantly displayed in beams, the process of their relay and display is

deterministic (and may be infinite). The relayed data is stored in the oscilloscope

memory and can be displayed graphically as beams at any time, without the need for any

“solution” such as decimation or excerption, strobe effect, and so on. It works regardless

of the relay speed.
Application Note 11 V2.0, 2009-03-20

http://www.oscilloscope-lib.com/

AP08071

DriveMonitor

PC Host Software (GUI)
2.5 Troubleshooting

Sometimes the communication between Host and Target does not work as expected, or

is cut-off completely. In particular, the virtual oscilloscope may show long response times

or even pauses. If the connections and baud rates are set correctly, then there are

essentially three different root causes of these problems:

• Problems with the Target

• Problems with the DriveMonitor USB Stick

• Problems with the Host Computer

2.5.1 Problems with the Target

It may happen that the target is dumping data too fast to the DriveMonitor USB stick. If

the target starts CAN transmission before the DriveMonitor hardware is ready, CAN error

messages may block the bus. In this instance, resetting the target while COM port

connection is established may help. Sometimes the COM Port connection has to be re-

established by clicking on the “Connect to COM Port” button (see Section 2.2 for

details).

It should be noted that CAN communication requires very accurate matching of the baud

rate - the baud rate must be correctly configured. When using customized target

hardware it is recommended to check the timing of the CAN_RXD and CAN_TXD signals

on the target pins.

2.5.2 Problems with the DriveMonitor USB Stick

The CAN to USB bridge is implemented using the 8 bit microcontroller XC886CM. This

device has to shuffle the data received from the USB side (FTDI, see Chapter 4.3) to the

CAN side, and vice versa.

Once the DriveMonitor is connected to the host USB and the “Connect to COM Port”

button is pressed, a small firmware package is downloaded to the bridge device. There

are a few settings which can influence the communication behaviour, but the main one

is the CAN baud rate. This can be adjusted in the U2CAN configuration menu. This menu

is usually hidden but can be opened by selecting: View >> Toolbars >> Advance. A

baud rate of 500 kBps at node 1 should be selected on both the target and the bridge

device.
Application Note 12 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
Figure 13 U2CAN Configuration Window in Advanced Toolbar

The pinout of the DriveMonitor Header (2 x 8 pins) has the same JTAG signals at the

same position as the standard Infineon JTAG header. In addition the DriveMonitor offers

a few more signals to support CAN (CANH and CANL), a UART (RXT and TXD) and to

supply the DriveCard (5 V). These additional signals may conflict with other target

hardware, especially the supply pins.

Note: Please note that Infineon Easy Kits and Starter Kits are usually supplied by a

power plug or via USB. These kits offer the pin compatible JTAG header, so a

hardware conflict would be caused if the DriveMonitor were connected to this

header.
Application Note 13 V2.0, 2009-03-20

AP08071

DriveMonitor

PC Host Software (GUI)
2.5.3 Problems with the Host Computer

The DriveMonitor needs some drivers on the PC side. Usually these drivers come with

the DriveMonitor installation and need to be installed first.

The Infineon DAS (Device Access Server) is required. After installation has been

completed the DriveMonitor enumerates with “DAS JTAG over USB plus CAN” and the

Windows Device Manager (select Start >> Control Panel >> System) shows the

following new entries:

• Ports (COM & USB): Infineon USB COM Port (COMxx)

• Universal Serial Bus Controllers: Infineon USB COM Port,

Infineon USB Debug Port

If the entries listed above are not visible the installation should be repeated as follows:

• If the DriveMonitor is plugged into the USB port, uninstall the “Unknown device” in the

device manager window of your system control panel

• Remove the DriveMonitor from the USB port

• Install the DAS Software

• Plug in the DriveMonitor

USB hubs can show different behavior, such as long response times or even pauses on

the USB transfer, which is visible on the virtual oscilloscope. In most cases this can be

optimized by adjusting the properties of the Infineon USB COM Port in the advanced

settings menu. Here the packet size (USB Transfer Sizes) for receive and transmit can

be reduced to 128 bytes (default: 4096 bytes). Furthermore the Latency Timer (BM

options) can be reduced to 1 msec (default 16 msec). This usually helps to get better

performance when monitoring data. However some USB hubs cannot be adjusted

properly. In this instance other PC hardware has to be used instead.
Application Note 14 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
3 Target Firmware

This chapter describes the implementation of the target firmware for the XC800 family

(XC886, XC888, XC878). The implementation for the XE166 family is very similar.

3.1 Program Flow

The program flow of the target microcontroller is an embedded real-time code which runs

in several interrupt service routines. Timer T21 provides a system tick of 500us, which

calls a scheduler. The scheduler state machine controls the application and reacts to

host commands.

The CAN controller is configured to three interrupt vectors for receive, transmit and error

handling. The CAN Message Objects have the following IDs:

• ID5 - receive object - MO 0: SET/GET command and Buttons

• ID55 - receive object - MO 2; unused

• ID7 - transmit object - MO1; slow data for status flags and display field

• ID77 - transmit object - MO 3; fast data for oscilloscope and progress bar

• ID57 - transmit object - MO 4; reply to GET command

Figure 14 Program Flow of the Client Firmware

RESET

Initialize

Application

MAIN

CAN – REC
ID5 / ID55

copy message
to buffers

set NewCMDx

reti

CAN – TRX
ID7 / ID77 / ID57

clear message
pending flags of

sent objects

reti

CAN – ERR

handle errors

reti

T21

every 0.5 ms

call Scheduler

reti

Scheduler

switch states upon
command exec.

ret

ExecuteCANCmd

handle command
switch states

reset NewCMDx

ret

application
interrupts

do something

reti

application

interrupts

do something

reti

application

interrupts

do something

reti

send
CAN messages
Application Note 15 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
3.2 Command Structure

The command structure is described in Chapter 2.4:

3.3 Receiving a CAN Message

Upon receipt of a CAN message object (MO 0 / MO 2 with ID5 / ID55) the receive

interrupt is vectorized. The corresponding message object is then copied in to the eight

byte wide receive buffer in case there is no command pending. The global command

variable is updated and a bit indicating a new command is set.

The following shows a code extract of the CAN Receive Interrupt Service Routine (ISR):

if (gb_NewCMD0==0) // write to buffer if ready for new data

{

CAN_vWriteCANAddress(CAN_MODATAL0); // access MO_0 low part

CAN_vReadEN(); // and read

CANRxdBuf0[0] = CAN_DATA0;

CANRxdBuf0[1] = CAN_DATA1;

CANRxdBuf0[2] = CAN_DATA2;

CANRxdBuf0[3] = CAN_DATA3;

CAN_vWriteCANAddress(CAN_MODATAH0); // access MO_0 high part

CAN_vReadEN(); // and read

CANRxdBuf0[4] = CAN_DATA0;

CANRxdBuf0[5] = CAN_DATA1;

CANRxdBuf0[6] = CAN_DATA2;

CANRxdBuf0[7] = CAN_DATA3;

guc_NewCMD0 = CANRxdBuf0[7]; // update command variable

gb_NewCMD0 = 1;

}

3.3.1 Command Execution

At every system timer tick the scheduler state machine is executed and the bit indicating

a new command is polled. If set, the corresponding command is executed and the bit is

cleared afterwards in order to accept new commands.

This handshaking mechanism with the receive interrupt ensures that an incoming

command has to be served first before a new command is accepted.

The following shows a code extract of the CAN Receive Interrupt Service Routine:

if (gb_NewCMD0) // gb_NewCMD0 is set in CANreceive interrupt XINTR6INT

{

ExecuteCANCmd();

gb_NewCMD0=0;

}

D0 D1 D2 D3 D4 D5 D6 D7 CAN ID

Commands from DriveMonitor to target

adrL adrH valL valH 0 0 sze CMD 5
Application Note 16 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
3.3.2 Command SET

With the SET command, the variable with the SET address is updated. It is therefore

necessary to have the address information of the respective variables. Address and data

size information are read from the receive buffer and the contents of the address is

written with the new value.

The following shows a code extract of the ExecuteCANCmd() function:

case CMDSET: // adrL / adrH / valL / valH / 0x00 / 0x00/ sze / CMDSET

adr = (unsigned char*) CANRxdBuf0[0];

sze = CANRxdBuf0[6];

i = CANRxdBuf0[2];

*adr++ = i;

if(sze == 2)

{ i = CANRxdBuf0[3];

 *adr = i;

}

break;

3.3.3 Command GET

With the GET command the host can request to read the contents of a variable. The host

has to send the address and size information first before the target responds with the

data on transmit message object MO 4.

The following shows a code extract of the ExecuteCANCmd() function:

case CMDGET: // adrL / adrH / valL / valH / 0x00 / 0x00/ sze / CMDGET

adr = (unsigned char*) CANRxdBuf0[0];

sze = CANRxdBuf0[6];

// Transmit MO 4 on request

...

break;

D0 D1 D2 D3 D4 D5 D6 D7 CAN ID

Commands from DriveMonitor to target

adrL 0 valL valH 0 0 sze SET 5

D0 D1 D2 D3 D4 D5 D6 D7 CAN ID

From DriveMonitor to target

adrL 0 valL valH 0 0 sze GET 5
Application Note 17 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
3.3.4 Start, Stop and Ramp Down Buttons

When selecting the Start, Stop, and Ramp Down buttons, the state variable of the

scheduler is updated and will be entered with the next timer tick.

3.3.5 Button Scope

Real-time monitoring of fast changing data is one of the key features of the DriveMonitor.

Therefore the CAN message object MO 3 - ID 77 is sent with every system tick to the

host. With this message, three 16 bit values can be monitored on the three beams of the

virtual oscilloscope. With the button scope the addresses of the three monitoring

variables can be changed.

The following shows a code extract of the ExecuteCANCmd() function:

case CMDSETBEAMS:

// change monitoring variables for scope beams

// adr0 | 0x00 | adr1 | 0x00 | adr2 | 0x00 | xx | CMDSETBEAMS

// green | pink | yellow |

CANTrxBuf1[3] = CANRxdBuf0[0]+1;

CANTrxBuf1[2] = CANRxdBuf0[0];

CANTrxBuf1[5] = CANRxdBuf0[2]+1;

CANTrxBuf1[4] = CANRxdBuf0[2];

CANTrxBuf1[7] = CANRxdBuf0[4]+1;

CANTrxBuf1[6] = CANRxdBuf0[4];

break;

D0 D1 D2 D3 D4 D5 D6 D7 CAN ID

From DriveMonitor to target

0 0 0 0 0 0 0 Button 5

D0 D1 D2 D3 D4 D5 D6 D7 CAN ID

From DriveMonitor to target

green 0 pink 0 yellow 0 0 SB 5
Application Note 18 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
3.4 Transmitting a CAN Message

There are three transmit message objects configured for sending data from the target to

the host. The transmit Interrupt Service Routine is vectorized once the CAN message is

completed, and the corresponding transmit pending flag is cleared. Each transmit

message object has a different trigger event.

The transmit messages have to be initialized. The transmit buffers CANTrxBuf0[8] and

CANTrxBuf1[8] are written with the address of the data to be transmitted. This is done

in function Scope_vInit().

void Scope_vInit(void)

{

 // slow CAN transfer for display fields sent at CAN-ID 7

 CANTrxBuf0[0] = (unsigned char) &Status_word+1;

 CANTrxBuf0[1] = (unsigned char) &Status_word;

 CANTrxBuf0[2] = (unsigned char) &gi_delta_angle+1;

 CANTrxBuf0[3] = (unsigned char) &gi_delta_angle;

 CANTrxBuf0[4] = (unsigned char) &gi_Speed+1;

 CANTrxBuf0[5] = (unsigned char) &gi_Speed;

 CANTrxBuf0[6] = (unsigned char) &t21+1;

 CANTrxBuf0[7] = (unsigned char) &t21;

 // fast CAN transfer for oscilloscope sent at CAN-ID 77

//green (beam 0)

 CANTrxBuf1[3] = (unsigned char) &gi_Speed+1;

 CANTrxBuf1[2] = (unsigned char) &gi_Speed;

 //pink (beam 1)

 CANTrxBuf1[5] = (unsigned char) &gi_Speed_reference+1;

 CANTrxBuf1[4] = (unsigned char) &gi_Speed_reference;

 //yellow (beam 2)

 CANTrxBuf1[7] = (unsigned char) &gi_V_q+1;

 CANTrxBuf1[6] = (unsigned char) &gi_V_q;

 //not used in scope but possible in progress bar

 CANTrxBuf1[1] = (unsigned char) &gi_Amplitude+1;

 CANTrxBuf1[0] = (unsigned char) &gi_Amplitude;

} // End of function Scope_vInit();

The transmitting function reads the contents of the address of the transmit buffer

CANTrxBuf0[8] and CANTrxBuf1[8], and copies it to the CAN_DATAx access

mediator register. The CAN message is then transmitted by the function

CAN_vTransmit(#MO). The following shows this code snippet:

void CAN_Transmit_MO1()

{

// MO1 is shown as Value

CAN_DATA0 = *((unsigned char data *) CANTrxBuf0[0]);

CAN_DATA1 = *((unsigned char data *) CANTrxBuf0[1]);

CAN_DATA2 = *((unsigned char data *) CANTrxBuf0[2]);

CAN_DATA3 = *((unsigned char data *) CANTrxBuf0[3]);

CAN_vWriteCANAddress(CAN_MODATAL1);

CAN_vWriteEN(ALL_DATA_VALID);

CAN_DATA0 = *((unsigned char data *) CANTrxBuf0[4]);

CAN_DATA1 = *((unsigned char data *) CANTrxBuf0[5]);

CAN_DATA2 = *((unsigned char data *) CANTrxBuf0[6]);
Application Note 19 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
CAN_DATA3 = *((unsigned char data *) CANTrxBuf0[7]);

CAN_vWriteCANAddress(CAN_MODATAH1);

CAN_vWriteEN(ALL_DATA_VALID);

CAN_vTransmit(1);// Send MO1 via CAN bus

}

3.4.1 Oscilloscope and Progress Bar

With every system timer tick the data for the soft oscilloscope and the progress bar are

sent to the host; i.e. it is synchronous to the scheduler tick. This data has the highest

transmit rate. The user has to ensure that the real-time conditions are met. This can be

tuned with the T21 overflow rate. The fast data uses ID77 with MO 3.

3.4.2 Status Flags and Display Fields

For data that changes at a slower rate, such as the status flags and display fields, the

data transmit rate does not have to be so frequent. The transmit rate is defined by a

variable which counts a defined number of system timer ticks. This ‘slow data’ uses ID7

with MO 1.

The following shows a code extract of the synchronous transmit trigger event at the

beginning of the Scheduler() function:

if(guc_countMO1-- == 0)

{

guc_countMO1 = CAN_MO1_RATE;

CAN_Transmit_MO1();

}

 if(gb_Off == 0) // Send continuous fast data only, when motor is started

{

CAN_Transmit_MO3();

}

Command D0 D1 D2 D3 D4 D5 D6 D7 CAN

ID

From target to DriveMonitor

oscilloscope D0 D1 beam 0: green beam 1: pink beam 2: yellow 77

Command D0 D1 D2 D3 D4 D5 D6 D7 CAN

ID

From target to DriveMonitor

display status flags D2 D3 D4 D5 D6 D7 7
Application Note 20 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
3.4.3 Command GET

The GET command is user-initiated; i.e. asynchronous. Once the GET command is

received the scheduler state machine responds to the requested data with transmit

message object MO 4 / ID57.

The following shows a code extract of the ExecuteCANCmd() function:

case CMDGET: // adrL / adrH / valL / valH / 0x00 / 0x00/ sze / CMDGET

adr = (unsigned char*) CANRxdBuf0[0];

sze = CANRxdBuf0[6];

// Transmit MO 4 on request

CAN_DATA0 = adr;

CAN_DATA1 = 0x00;

CAN_DATA2 = * (unsigned char data *) adr;

CAN_DATA3 = * (unsigned char data *) (adr+1);

CAN_vWriteCANAddress(CAN_MODATAL4);

CAN_vWriteEN(ALL_DATA_VALID);

 CAN_DATA0 = 0x00;

CAN_DATA1 = 0x00;

CAN_DATA2 = sze;

CAN_DATA3 = CMDGET;

CAN_vWriteCANAddress(CAN_MODATAH4);

CAN_vWriteEN(ALL_DATA_VALID);

 CAN_vTransmit(4); // Send MO4 via CAN bus

break;

D0 D1 D2 D3 D4 D5 D6 D7 CAN ID

From target to DriveMonitor

adrL 0 valL valH 0 0 sze GET 57
Application Note 21 V2.0, 2009-03-20

AP08071

DriveMonitor

Target Firmware
3.4.4 Example for Get and Set Commands in Grouped Entries

The following figure shows an example of grouped entries for SET and GET commands

on the host and target.

Figure 15 Grouped Entries for SET and GET Commands on Host and Target

CMDGET

CMDSET ID5 ADL ADH RR RR 00

ID5 TRX ADL ADH 00 00 00 00 SZE 83

ID57 REC

00 SZE 80TRX

ADL ADH data data 00 00 SZE 83
Application Note 22 V2.0, 2009-03-20

AP08071

DriveMonitor

Hardware Description
4 Hardware Description

The DriveMonitor USB Stick consists of three main blocks:

• The USB interface provides the JTAG and VCOM port

• The XC886CM bridges the UART to a CAN protocol

• A connector provides all interfaces to the target system

Figure 16 Block Diagram of DriveMonitor

4.1 USB Interface

The USB interface is provided by a dual Multi-Purpose UART / FIFO controller

(FT2232C) which can be configured individually in several different modes. For the

DriveMonitor it is configured as follows:

• Channel A makes use of the Multi-Protocol Synchronous Serial Engine interface

which provides the synchronous serial protocol for JTAG.

• Channel B is configured as a fast UART with FIFO.

• The EEPROM configures the FT2232 in order to appear as an USB 2.0 full speed

device (12 Mbit/s).

BlockDiagram.emf

ta
rg

e
t
c
o

n
n

e
c
to

r

2
x
8
 p

in

VCOM

CAN

JTAG

5V

USB
FTDI

FT2232

VCOM

JTAG

CAN MCU
XC886 CM

CAN
TLE 6250 G

V33
Application Note 23 V2.0, 2009-03-20

AP08071

DriveMonitor

Hardware Description
Figure 17 USB Interface

The driver software is included in the DAS (Device Access Server) architecture which

provides one single interface for all types of debug tools fulfilling all the performance and

reliability requirements.

The tool interface is on the software level (DAS API) and implemented in a generic DLL.

It provides the abstraction of the physical device connection, which becomes a

parameter value in the connection setup phase. During operation the physical

connection (e.g. JTAG) is fully transparent to the tool. The DriveMonitor can therefore be

used for JTAG debugging with all third-party debugger tools that support the DAS

interface.

The UART interface is provided as a standard virtual COM port and is visible for all

applications. It can be configured in the Windows Control Panel.

For software updates and further details, please refer to:

http://www.infineon.com/DAS
Application Note 24 V2.0, 2009-03-20

http://www.infineon.com/DAS

AP08071

DriveMonitor

Hardware Description
4.2 CAN Microcontroller XC886CM

The XC886CM provides advanced networking capabilities by integrating a CAN

controller (V2.0B active) and up to 32 KByte of embedded Flash memory on a single

chip. The on-chip CAN module reduces the CPU load by performing most of the

functions required by the networking protocol (masking, filtering and buffering the CAN

frames).

The XC886/888CLM offers an optimized fit to a wide range of CAN networking

applications including automotive body applications, control for industrial and agricultural

equipment, building control for lifts/escalators, intelligent sensors, distributed I/O

modules, and industrial automation. For further details, please refer to:

http://www.infineon.com/XC886.

In the DriveMonitor USB stick the XC886 is used as a UART-CAN bridge. Most of the

on-chip peripherals are unused, although a user LED is connected to port 3.1.

Figure 18 CAN Microcontroller XC886CM

The clock for the DriveMonitor USB stick is a common 6 MHz clock for FT2232 and

XC886CM. A ceramic resonator is connected to the FT2232 device. The output (signal

6 MHZ) of the integrated oscillator circuit is taken and amplified by a single buffer device

whose output is connected to the clock input of XC886CM (signal 6 MHZ_O).
Application Note 25 V2.0, 2009-03-20

http://www.infineon.com/XC886

AP08071

DriveMonitor

Hardware Description
4.3 CAN Transceiver and Target Connector

The CAN interface of the XC886CM is connected to the CAN transceiver

TLE 6250GV33. The CAN-Bus is terminated by a 120 Ω resistor.

Figure 19 CAN Transceiver and Target Connector

The target connector provides all signals at a 2 x 8 pin header in an extended OCDS pin

configuration. The CAN and VCOM signals are placed to ensure that the DriveMonitor

can be used with a very wide variety of evaluation kits.

When used with Infineon DriveCards, the target connector can be used directly with a

16-pin cable. These DriveCards provide a digital isolation for CAN and JTAG and need

a 5 V supply for the isolation devices.

Note: When using with Infineon Easy Kits or Starter Kits, ensure that the 5 V VCC supply

(pin 2 of target connector) is NOT connected to the OCDS connector, because the

standard OCDS connector provides the supply voltage of the target to a level

shifter. If there is a power supply of 5 V at the target, the DriveMonitor can be used

directly. At a 3.3 V target, level shifters must be used.
Application Note 26 V2.0, 2009-03-20

AP08071

DriveMonitor

Hardware Description
4.4 PCB Layout

The following figures show the PCB layout of the DriveMonitor.

Figure 20 Top Layer

Figure 21 Bottom Layer

Figure 22 Components
Application Note 27 V2.0, 2009-03-20

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

http://www.infineon.com

	1 Overview
	2 PC Host Software (GUI)
	2.1 JTAG Toolbar
	2.2 CAN Toolbar
	2.3 CAN Control Window
	2.4 Customizing the CAN Control Window
	2.4.1 Group Entries
	2.4.2 Display Field
	2.4.3 Buttons
	2.4.4 Status Flags
	2.4.5 Progress Bars
	2.4.6 Oscilloscope

	2.5 Troubleshooting
	2.5.1 Problems with the Target
	2.5.2 Problems with the DriveMonitor USB Stick
	2.5.3 Problems with the Host Computer

	3 Target Firmware
	3.1 Program Flow
	3.2 Command Structure
	3.3 Receiving a CAN Message
	3.3.1 Command Execution
	3.3.2 Command SET
	3.3.3 Command GET
	3.3.4 Start, Stop and Ramp Down Buttons
	3.3.5 Button Scope

	3.4 Transmitting a CAN Message
	3.4.1 Oscilloscope and Progress Bar
	3.4.2 Status Flags and Display Fields
	3.4.3 Command GET
	3.4.4 Example for Get and Set Commands in Grouped Entries

	4 Hardware Description
	4.1 USB Interface
	4.2 CAN Microcontroller XC886CM
	4.3 CAN Transceiver and Target Connector
	4.4 PCB Layout

