

Application Note Please read the Important Notice and Warnings at the end of this document 001-65209 Rev.*I

www.infineon.com page 1 of 42 2021-03-19

AN65209

Getting Started with FX2LP™

About this document

Scope and purpose

AN65209 introduces you to the EZ-USB FX2LP USB 2.0 device controller. This application note helps you

build a project for FX2LP and explore its various development tools, and then guides you to the appropriate
documentation to accelerate in-depth learning about FX2LP.

Associated part family

CY7C68013A/14A/15A/16A/53

Associated project

Yes

Software version

None

More code examples? We heard you.

To access a variety of FX2LP code examples, please visit our USB High-Speed Code Examples webpage.

To access USB 3.0 product family, please visit our USB 3.0 Product Family webpage.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 3
1.1 Bulkloop_FX2LP Project .. 3

1.1.1 VS_Control Center .. 3
1.1.2 Bulkloop_VCS ... 3

1.1.3 Windows Driver and Library ... 3

2 USB 2.0 ... 4

3 FX2LP Introduction .. 5

3.1 FX2LP Features .. 5
3.1.1 USB Interface .. 5

3.1.2 Parallel interfaces .. 6
3.1.2.1 Slave FIFO .. 6
3.1.2.2 General Programmable Interface ... 7

3.2 Serial interfaces ... 8

3.3 CPU and Memory ... 8
3.3.1 8051 .. 8

3.3.2 Boot Options .. 8
3.3.2.1 Package Choices ... 8

http://www.infineon.com/
http://www.cypress.com/documentation/code-examples/usb-hi-speed-code-examples
http://www.cypress.com/products/superspeed-usb-peripherals

Application Note 2 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Table of contents

3.4 Example Applications of FX2LP... 10
3.4.1 Interfacing FPGA/ASIC using Slave FIFO .. 10

3.4.2 Further Reading .. 10
3.4.3 Booting an FPGA from FX2LP ... 11

3.4.4 Further Reading .. 11

4 Cypress Design Resources .. 12

5 FX2LP Development Tools .. 14
5.1 FX2LP Development Board ... 15

5.2 Running the Bulkloop Demo ... 16
5.2.1 Using USB Control Center .. 16
5.2.2 Using BULKLOOP_VCS ... 19

5.3 FX2LP Firmware Development ... 20

5.3.1 Keil uVision2 ... 20

5.3.2 Cypress USB Firmware Frameworks ... 20
5.3.2.1 TD_Init ... 22
5.3.2.2 TD_Poll .. 22
5.3.2.3 Interrupt Service Routines .. 23

5.3.2.4 Handling USB Dual Speeds ... 23
5.3.3 Building the Bulkloop Project .. 24

5.4 GPIF Designer .. 25

6 The Windows Side ... 27

6.1 Cypress USB Driver .. 27

6.1.1 Driver/Library Alternatives .. 27

6.2 Cypress Libraries ... 28

7 Summary ... 30

8 Appendix A: FX2LP Development Kit (DVK) ... 31

8.1 Firmware Example Projects .. 31

9 Appendix B: Additional USB Hi-Speed Devices from Cypress... 34

10 Appendix C: Third-Party Development Kits and SDKs .. 35

10.1 Third-party SDKs ... 35

11 Appendix D: Application Notes and Reference Designs... 36

11.1 Application Notes .. 36

12 Appendix E: Adding Custom VID and PID to the .inf File .. 39

Revision history... 41

Application Note 3 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Introduction

1 Introduction

The Cypress EZ-USB FX2LP (hereafter abbreviated as FX2LP) is a flexible USB 2.0 PERIPHERAL controller

designed to handle maximum USB 2.0 bandwidth. To take full advantage of the USB 2.0 480 Mbps signaling
rate, FX2LP contains specialized hardware to buffer the USB data and connect seamlessly to a variety of high-

bandwidth external devices such as MCUs, ASICs, and FPGAs. After a brief introduction to USB 2.0, this
application note describes FX2LP features that contribute to its high throughput.

Any IC is only as good as the tools that support it, so the remaining sections of this application note introduce
the FX2LP Development Kit (DVK) and the FX2LP firmware and software development tools. A companion zip
file contains folders with code samples and an application is described in detail in this application note. Briefly,

they are as follows:

1.1 Bulkloop_FX2LP Project

The Bulkloop project attached to this application note shows how to structure the FX2LP firmware to create a

USB device. Much of the USB request handling is done by a Cypress-provided USB Firmware Framework, with
the user code required only for the specific application requirements. The bulkloop.c file contains a full USB

device template that can serve as the basis for a custom application.

Cypress tools include a free evaluation version of Keil uVision2 for the FX2LP CPU (8051). The Keil uVision2
Integrated Development Environment (IDE) compiles the user code and USB Firmware Framework to produce

the hex file. This hex file needs to be loaded by the provided USB Control Center application and exercised by
the provided Bulkloop_VCS application.

As part of the firmware tools discussion, the GPIF Designer program is introduced to show how custom
interfaces are created using graphical waveform entry (see GPIF Designer).

1.1.1 VS_Control Center

This is a Microsoft Visual Studio solution, written in Visual C#, that creates an application called USB Control
Center. This application is used to download the FX2LP code (a hex file) into the FX2LP Development Kit. The
executable is provided for instant use and the source code is provided for reference. It uses the Cypress .NET

library, demonstrating the use of many of its high-level functions.

1.1.2 Bulkloop_VCS

This is a simple Windows Visual Studio application written in Visual C#. It features continuous data looping and

byte counting that can be used to measure USB transfer bandwidths with various USB controller cards and

computers. As with the USB Control Center, both the source code and executable are provided.

1.1.3 Windows Driver and Library

Cypress provides a Windows driver to support FX2LP-based designs. It supports all USB transfer types, and is
available in binary form for use with customer products.

The USB Control Center and Bulkloop_VCS applications use CyUSB.dll, a managed Microsoft .NET class library
provided by Cypress. This makes it compatible with the Visual Basic.NET, Visual C#, Visual C++ (Win Forms), and

Visual J# languages. This library provides high-level calls that hide driver complexity and present a very simple
USB programming model.

http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=14321

Application Note 4 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

USB 2.0

2 USB 2.0

USB standardizes the connection of computer peripherals, such as keyboards, mice, printers, thumb drives,

hard disks, and portable media players. USB provides communication and power to peripheral devices. USB
has become the dominant connectivity solution for PCs and consumer devices. Its popularity is largely due to

its ease of use, achieved by its standardized and robust underlying structure.

The USB 1.0 specification, released in 1996, defined two transfer speeds to address common device types of the
time. Low-speed devices operate at 1.5 Mbps to support devices such as keyboards and joysticks. Full-speed
devices operate at 12 Mbps to support higher bandwidth devices, such as printers and disk drives. A minor
specification revision 1.1, released in 1998, mostly addressed hub issues and became the widely adopted first-
generation specification.

The USB 2.0 specification was released in 2000. It increased the signaling rate to 480 Mbps, naming it Hi-Speed.

The 2.0 specification is compatible with the previous transfer rates.

The USB 3.0 specification, released in 2008, further increased the signaling rate to 5 Gbps, calling it

SuperSpeed. The Cypress FX3 family supports this speed.

The subject of this application note is the Cypress FX2LP, which operates at Hi-Speed and Full-speed. Appendix

B lists other Hi-Speed devices available from Cypress. All USB controllers from Cypress are listed here. For
more details of USB 2.0, refer to USB 101: An Introduction to Universal Serial Bus 2.0.

http://www.cypress.com/?id=167&source=productshome
http://www.cypress.com/?rID=39327

Application Note 5 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Introduction

3 FX2LP Introduction

FX2LP integrates a USB 2.0 transceiver, a smart serial interface engine (SIE), large data buffers, an enhanced

8051 microcontroller, and a programmable peripheral interface in a single chip. A simplified FX2LP block
diagram is shown in Figure 1.

Figure 1 FX2LP Block Diagram

The function of FX2LP is to transfer data between a USB host and a peripheral device. FX2LP provides this
connectivity using parallel and serial interfaces. In systems where the FX2LP CPU is not required to modify the

data before sending it to the USB host, the FX2LP firmware only needs to initialize its hardware transfer units,

allowing high-bandwidth USB transfers to proceed without CPU intervention.

FX2LP can be programmed to enumerate as any USB device type, conforming to a standard USB class, such as
HID or mass storage, or a custom device.

3.1 FX2LP Features

This section briefly describes the key features of FX2LP.

3.1.1 USB Interface

Hi-Speed USB transfers can be visualized as supporting two ends of a pipe. On one end, the pipe receives and
sends data at 480 Mbps over the USB interface, as shown in Figure 2. The other end of the pipe is described in

Parallel interfaces.

Application Note 6 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Introduction

Pipe

(FIFO)
SIE

P
H

Y

VBUS

D+

D-

GND
480 Mbits/sec

Figure 2 USB Connection to a Data Pipe

To handle the USB host side, FX2LP includes:

• A physical bus interface (PHY) containing a USB 2.0 transceiver that supports Hi-Speed and Full Speed USB
transfers.

• A Smart serial interface engine (SIE). The SIE translates PHY signals into bytes. All Cypress USB SIEs add logic
to handle low-level USB details, such as error correction and Packet ID (PID) synchronization, relieving the

programmer of these tasks. This Smart SIE delivers bytes to an endpoint FIFO memory. The Smart SIE also
contains logic to enumerate FX2LP as a full-fledged USB device and also capable of loading code into its
internal RAM.

• Seven endpoints that support all four USB transfer types: CONTROL, BULK, INTERRUPT, and ISOCHRONOUS.

An endpoint is a transmitter or receiver of USB data.

• Large endpoint buffers (FIFOs) with multiple buffering. Double, triple, or quad buffering allows USB transfers

to be pipelined with a peripheral, increasing the throughput.

• Low-power operation (the “LP” in FX2LP). The USB VBUS wire supplies 5 V, which provides limited power to
peripheral devices. The low-power consumption of FX2LP enables you to create bus-powered applications.

For example, the FX2LP Development Kit is bus-powered, eliminating the need for an external power unit.

FX2LP can also be used in self-powered designs in which the peripheral device supplies its own power.

3.1.2 Parallel interfaces

The USB 2.0 specification and generous FX2LP buffering take care of transporting bytes in and out of endpoint

FIFOs at high speed over the USB interface, but that is only half of the job. The other end of the pipe must
transport the FIFO data on and off chip at speeds matching USB transfer rates. FX2LP contains two hardware

interfaces specifically designed for this purpose: Slave FIFO and general programmable interface (GPIF), as
shown in Figure 1.

Note: In addition to the high-speed transfer logic, the FX2LP 8051 has random access to the endpoint
FIFOs for applications that require interpreting or modifying the data that is moving between the
USB and peripheral interfaces.

3.1.2.1 Slave FIFO

FX2LP provides a Slave FIFO interface for use by external devices containing a FIFO controller, such as an MCU,
FPGA, or ASIC (see Figure 3).

Pipe

(FIFO)

S
la

v
e

 F
IF

O

L
o

g
ic

Data

Clock

Flags

Control

FIFO Address

Figure 3 FX2LP Slave FIFO Interface

Application Note 7 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Introduction

The Slave FIFO interface:

• Provides a data bus that is 8 or 16 bits wide.

• Operates either asynchronously (no clock) or synchronously (with clock).

• Accepts an external clock or uses an internal FX2LP 30-/48-MHz clock (in synchronous mode), which it makes
available on the CLKOUT pin. There is no need of crystal for the external peripheral device if it can work

based on the clock provided on the CLKOUT pin.

• Has output flags indicating FIFO status, such as full and empty.

• Has control inputs OE#, RD#, and WR#.

• Has two address lines to select one of four FX2LP FIFOs.

• Automatically launches USB transfers when the FIFO fills or empties.

• Has a control signal (PKETND) that the interface device can use to launch a “short packet” (FIFO has data
but is not full). Short packets routinely occur as the final packet of a long USB transfer.

In systems where data processing is not required in FX2LP, the FX2LP Slave FIFO interface requires minimal
firmware just to select the Slave FIFO interface and to configure the flags to indicate the status of the FIFOs.

Waveforms and timing values for the Slave FIFO interface are given in the FX2LP datasheet.

3.1.2.2 General Programmable Interface

Not all external controllers are designed to connect to a FIFO. Therefore, FX2LP provides a high-speed interface,
GPIF (shown in Figure 4), which provides direct connection to common interfaces, such as disk drives, FPGAs,

and ASICs, without requiring additional glue logic. The GPIF’s core is a state machine—you must develop
waveforms using GPIF Designer to control the state machine. The GPIF is driven by one of the four Waveform

Descriptors, which are data structures containing all the waveform information. GPIF Designer relieves the
designer of understanding the descriptor formats. It uses the graphical waveform entry to create a C-language

source file, which can be included in an FX2LP project.

Pipe

(FIFO)

G
P

IF

Data

Clock

ADDR

Control

RDY

STATE

Waveform

Descriptors

Figure 4 FX2LP GPIF Interface

The GPIF (see the GPIF Designer section):

• Provides a data bus that is 8 or 16 bits wide.

• Operates synchronously (with clock).

• Accepts an external clock or uses an internal FX2LP 30-/48-MHz clock (in synchronous mode), which it makes

available on a device pin.

• Provides nine address outputs. Addresses can be initialized and incremented on a clock-by-clock basis.

• Provides six control (CTL) and ready (RDY) signals. Six control outputs are also programmable on a clock-by-

clock basis. As a simple example, RD# and WR# strobes can be created with programmable durations and
polarities using these control signals. Six ready inputs can be tested in a GPIF state machine to read status
and perform interface synchronization. Three state outputs (GSTATE [2:0]) indicate the GPIF state, useful for

debugging with a logic analyzer.

http://www.cypress.com/?rID=38801
http://www.cypress.com/?rID=14448

Application Note 8 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Introduction

3.2 Serial interfaces

• In addition to the USB and peripheral interfaces, FX2LP contains:

• An I2C master (only) which operates at 100 or 400 kHz.

• Two standard 8051 USARTs. These are standard UARTs with a synchronous option. The USART interface pins
are available on separate I/O pins, not multiplexed with GPIO pins.

• Up to 40 GPIOs. These pins are multi-purpose, serving as GPIO pins or pins that support the Slave FIFO or

GPIF interfaces. The Package Choices section illustrates these interface options.

3.3 CPU and Memory

3.3.1 8051

• FX2LP has an 8051 core with two USARTs, three counter/timers, and an enhanced interrupt system. The core
can use a 48 MHz, 24 MHz, or 12 MHz clock. The CPU is supported by 16KB of on-chip code/data RAM.

• The enhanced interrupt system uses an “Autovector” mechanism to automatically call one of the 27 USB

interrupt service routines (ISRs), depending on the USB activity that requires service. Automatically
incrementing pointer hardware (“Autopointers”) speed up block transfers.

3.3.2 Boot Options

• FX2LP uses RAM for program storage. FX2LP has the following boot options:

 USB boot.

 I2C boot.

 Boot from external parallel memory.

• When connected to USB, its Smart SIE enumerates as a USB bootloader capable of loading program code
into its internal RAM. After the code is loaded, FX2LP electrically disconnects itself from USB and

immediately reconnects as the device defined by the downloaded code. This process is called
Re-Numeration™.

• The FX2LP program RAM also can be loaded at power-on from an external serial EEPROM. Boot options are
detailed in AN50963 - EZ-USB® FX1™/FX2LP™ Boot Options.

3.3.2.1 Package Choices

FX2LP is available in three packages, as Figure 5 shows:

• 56-pin SSOP, QFN, and VFBGA.

• 100-pin TQFP package.

• 128-pin TQFP package.

http://www.cypress.com/?rID=34253

Application Note 9 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Introduction

PC[7:0]/GPIFADR[7:0]
PE7/GPIFADR8
PE6/T2EX
PE5/INT6
PE4/RxD1OUT
PE3/RxD0OUT
PE2/T2OUT
PE1/T1OUT
PE0/T0OUT

CTL[5:3]
RDY[5:2]

TxD1

RxD0
TxD0
RxD1

T1

INT4
INT5#

T2

WR# T0
RD#

EA

CS#
OE#
PSEN#

A[15:0]
D[7:0]

100

128

PD[7:0]
PB[7:0]

RDY0
RDY1

CTL0
CTL1
CTL2

XTALIN
XTALOUT

DPLUS
DMINUS

SCL
SDA

RESET#
WAKEUP#

XCLK
CLKOUT

INT0#/PA0
PA1/DA0

PA2
WU2/PA3

PA4
PA5
PA6
PA7

56

IORDY
DMARQ

IOW
IOR
DMACK

←INTRQ
→DA0
→DA1
→DA2
→CS0
→CS1
→DASP
→RESET

FIFO Data

GPIF

SLRD
SLWR

PRGFLAG
INFULL
OUTEMPTY

←INT0
←INT1
←SLOE
PA3
←FIFOADR0
←FIFOADR1
←PKTEND
PA7

FIFO Data

Slave FIFOSingle Chip

Figure 5 Three FX2LP Package Choices

The 56-pin package is the lowest-cost version of FX2LP. The signals on the left edge of the 56-pin block (in

Figure 5) are common to all package versions in the family. Three modes are available in all package versions:

single-chip, GPIF, and Slave FIFO. These modes define the signals shown on the right edge of the 56-pin block

(in Figure 5). The 8051 selects the interface mode using an internal register. Single-chip mode is the power-on
default configuration.

The 100-pin package adds functionality to the 56-pin package by adding 44 pins:

• Two additional 8-bit I/O ports, PORTC and PORTE.

• Seven additional GPIF controls (CTL) and ready (RDY) signals.

• Nine non-multiplexed control signals (two UARTs, three timer inputs, INT4, and INT5#).

• Eight additional control signals multiplexed on to PORTE.

• Nine GPIF address lines, multiplexed on to PORTC(8) and PORTE(1),

• RD# and WR# signals, which may be used as read and write strobes for PORTC.

The 128-pin package adds 8051 address and data buses and their control signals. These added pins allow
FX2LP to operate with an external 8051 memory. This package is used in the FX2LP Development Board.

Application Note 10 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Introduction

3.4 Example Applications of FX2LP

3.4.1 Interfacing FPGA/ASIC using Slave FIFO

In Figure 6, an FPGA or ASIC contains a FIFO controller that connects directly to the FX2LP Slave FIFO pins. The
FPGA/ASIC also connects to hardware that is specific to the application, such as a data logger or image sensor.
Although a synchronous FIFO is shown using the IFCLK signal, FX2LP also supports an asynchronous (no clock)

FIFO interface.

System

sensors,

data

channels

etc.

FPGA

ASIC

FX2

LP
S

y
n

c
 S

la
v
e

 F
IF

O
PC

IFCLK

RD-WR-OE-CS

FLAGS

FIFOADR(2)

D(16/8)

PKTEND

U
S

B
 2

.0

Figure 6 FPGA/ASIC Sees FX2LP as a FIFO

Further Reading

For more information about the FX2LP Slave FIFO interface, refer AN61345 - Designing with EZ-USB FX2LP™
Slave FIFO Interface using FPGA, which presents a detailed design example.

Refer to KBA222479 USB2.0 Camera Interface Using FX2LP™ and Lattice CrossLink FPGA for an example

project that implements a UVC framework to interface an image sensor with the Host PC/mobile phone using

the FX2LP device.

Some interface chips may provide the necessary FIFO interface signals without modification. For example, an
MPEG decoder can map its signals to the FX2LP FIFO as follows:

Table 1 MPEG Decoder Connections to FX2LP

MPEG Decoder Signals FX2LP Signals

MPEG_CLK IFCLK

MPEG_SYNC PKTEND#

MPEG_VALID SLWR#

D[7:0] FD[7:0]

External Tuner Control I2C bus

3.4.2 Further Reading

Cypress provides a reference design for a “TV Dongle”, documented at FX2LP DMB-T / H TV Dongle Reference
Design.

If an external chip does not exactly map to the FX2LP Slave FIFO signals, as in Table 1, the FX2LP GPIF can be
programmed to match the required signals without additional external logic.

http://www.cypress.com/?rID=43046
http://www.cypress.com/?rID=43046
https://community.cypress.com/docs/DOC-14406
http://www.cypress.com/?rID=37775
http://www.cypress.com/?rID=37775
http://www.cypress.com/?rID=37775
http://www.cypress.com/?rID=37775

Application Note 11 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Introduction

3.4.3 Booting an FPGA from FX2LP

FX2LP is all about efficient system integration. Figure 7 and Figure 8 illustrate another way FX2LP can save
external logic.

FPGA FX2LP PC

Bitstream

Boot

Memory

Figure 7 FPGA Boots from External Memory

At power-on, an FPGA boots its configuration bitstream using an external memory (Figure 7).

FPGA FX2LP PC

Bitstream

Figure 8 FPGA Boots through FX2LP

FX2LP can be configured to load the FPGA bitstream file from the PC as in Figure 8. This eliminates the need for
a boot memory and enables FPGA updates from the PC.

3.4.4 Further Reading

For an example implementation using a Xilinx Spartan-3E FPGA, refer AN63620 - Configuring a Xilinx Spartan-
3E FPGA Over USB Using EZ-USB FX2LP™.

http://www.cypress.com/?rID=46029
http://www.cypress.com/?rID=46029

Application Note 12 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Cypress Design Resources

4 Cypress Design Resources

Cypress FX2LP design resources include datasheets, application notes, evaluation kits, reference designs,

firmware examples, and software tools. The resources are summarized in Table 2.

Table 2 FX2LP Resource Summary

Design Available Resources Where To Find Resources

Hardware Development Board – Schematic, Board

files and documentation

Development Kit (DVK) Schematic

Board files available with FX2LP DVK

installation

DVK User Guide

DVK Quick Start Guide

Hardware design guidelines including
recommendations for crystals, decoupling

capacitors for power supplies and PCB

layout

Application note – AN15456

IBIS model http://www.cypress.com/?id=193&rtID=114

FX2LP

Firmware

Free version of Keil IDE (up to 4KB of code

size)

Available with FX2LPDVK installation

Firmware examples

Sync Slave FIFO firmware example in a

complete design with FPGA

Application note - AN61345

Firmware

Debug

Setting Up, Using, and Troubleshooting

the Keil Debugger Environment
Application note - AN42499

Serial (UART) Port Debugging of

FX1/FX2LP Firmware

Application note – AN58009

Host PC

Software

USB2.0 driver – cyusb.sys Available with Suite USB installation. This

Suite USB installation file (.exe) is also

available with the FX2LP DVK installation.

Suite USB for Mac OS is also available. Use
FX3 SDK for Linux to get the host application

similar to Control Center for Linux platform.

Host application examples – Control

Center and Streamer applications

GPIF Interface

Design

GPIF Designer Tool that enables you to
design a GPIF waveform and generate

code to be integrated into firmware

Available with GPIF Designer installation. The
GPIF Designer installation file (.exe) is also

available with the FX2LP DVK installation.

Examples of popular GPIF

implementations

Application notes - AN57322 – Interfacing

SRAM with FX2LP over GPIF

AN66806 – EZ-USB® FX2LP™ GPIF Design

Guide

AN63787 – EZ-USB® FX2LP™ GPIF and Slave

FIFO Configuration Examples using 8-bit

Asynchronous Interface

Documentation on GPIF and instructions

for using the tool

GPIF Designer’s User Guide – available with

GPIF Designer Tool

Other Collateral

FX2LP Datasheet http://www.cypress.com/?rID=38801

http://www.cypress.com/?id=193&rtID=76
http://www.cypress.com/?rID=14321
http://www.cypress.com/?docID=37298
http://www.cypress.com/?docID=37300
http://www.cypress.com/?rID=12956
http://www.cypress.com/?id=193&rtID=114
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=43046
http://www.cypress.com/?rID=12960
http://www.cypress.com/?rID=39786
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=14448
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=12937
http://www.cypress.com/?rID=12937
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=38801

Application Note 13 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Cypress Design Resources

Design Available Resources Where To Find Resources

FX2LP Technical Reference Manual http://www.cypress.com/?rID=38232

Application Notes http://www.cypress.com/?id=193&rtID=76

Reference Designs http://www.cypress.com/?id=193&rtID=201

Knowledge Base Articles http://www.cypress.com/?id=193&rtID=118

Material on USB 2.0 http://www.beyondlogic.org/usbnutshell/usb1.shtml

AN57294 - USB 101: An Introduction to Universal Serial Bus 2.0

Third-party Development Kits http://www.ztex.de/usb-fpga-1

http://www.opalkelly.com/products/xem6010/

Features of these development kits are given in Appendix C: Third-

Party Development Kits and SDKs.

http://www.cypress.com/?rID=38232
http://www.cypress.com/?id=193&rtID=76
http://www.cypress.com/?id=193&rtID=201
http://www.cypress.com/?id=193&rtID=118
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.cypress.com/?rID=39327
http://www.ztex.de/usb-fpga-1
http://www.opalkelly.com/products/xem6010/

Application Note 14 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

5 FX2LP Development Tools

The steps involved in developing and testing the FX2LP firmware are shown in Figure 9.

Host PC

GPIF Designer FX2LP firmware project opened in
Keil uVision2 IDE USB Control Center

FX2LP DVK

Figure 9 Steps for Developing and Testing Firmware

1. Develop the interface waveforms using GPIF Designer to communicate with the peripheral device

connected to the GPIF of FX2LP. Export the .c file and integrate the .c file into the FX2LP firmware project.
This step is not required if you are not using the GPIF interface. More details on using the GPIF Designer are

described in the GPIF Designer section.

2. Develop the FX2LP firmware with the help of the firmware framework provided by Cypress. Integrate the .c
file that was exported from step 1. Build the firmware project using the Keil uVision2 IDE. This step

generates .hex and .iic file. The .hex file is for programming the RAM of FX2LP and the .iic file is for

programming the EEPROM that is connected to FX2LP. The FX2LP firmware framework and the steps to

build the FX2LP firmware are described in the FX2LP Firmware Development section.

3. Use the Control Center application to program the RAM of FX2LP or the EEPROM that is connected to FX2LP.
Usage of the Control Center application is shown in the Using USB Control Center section.

4. Verify the functionality of the firmware with the help of the FX2LP DVK. More details of the FX2LP DVK are

described in section 5.1 and Appendix A: FX2LP Development Kit (DVK).

The zip file accompanying this application note contains the following directory structure:

Figure 10 Application Note Folders

Note: The unzipped application note folder contains copies of various Cypress code samples and
development tools available for download. For convenience, they are collected in one folder. For
further development, check the Cypress web site for the most current file versions.

This section contains directions for creating and loading an FX2LP firmware example called bulkloop into an

FX2LP Development Kit. Along the way, it introduces various tools that ease design of any USB peripheral
device using FX2LP. If you do not have the FX2LP DVK, the instructions still provide an overview of the FX2LP

http://www.cypress.com/?id=193&rtID=119

Application Note 15 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

chip and tools available. This section shows how to create and run Windows applications to test the bulkloop
design.

5.1 FX2LP Development Board

Cypress Driver:

cyusb.sys, cyusbfx1_fx2lp.inf

PC

Figure 11 FX2LP Development Kit and Windows Driver

The FX2LP Development Kit is available at: http://www.cypress.com/?rID=14321.

Also included with this kit (and available for free download) is the development software package including a
free version of the Keil uVision2 IDE (limited in object size to 4 kilobytes) and C compiler. More details about the

DVK are in Appendix A.

To attach the board to a PC for the first time, follow these steps:

1. Prepare FX2LP board jumpers as shown in Table 3.

Table 3 EZ-USB FX2LP Board Jumper Settings

JP State Purpose

6,7 OUT Memory is configured for development

2 IN Power the board from USB connector

1,5,10 IN Local 3.3V power source

3 IN All 4 jumpers IN—activate 4 LEDs D2-D5

8 Either Not used (for Remote Wakeup testing)

2. In the lower left corner of the board, move the EEPROM ENABLE slide switch to the “NO EEPROM” (down)
position. This enables the FX2LP chip to enumerate itself as a code loader. The other slide switch (EEPROM
SELECT) can be in either position.

3. Plug the FX2LP board into a PC USB port. If this is the first time, you should see a popup message to install a
USB driver. Navigate to the application note driver folder and select the sub-folder corresponding to your

Windows OS.

You can confirm a successful driver install by viewing the Windows Device Manager:

http://www.cypress.com/?rID=14321

Application Note 16 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

Figure 12 FX2LP Board Driver (Bootloader) is Installed

After this driver is installed, any Windows apps that communicate with the FX2LP Development Board will

recognize it.

Before showing how to create the bulkloop.hex file, the next two sections illustrate how to use two Windows

apps to load and test the FX2LP firmware.

5.2 Running the Bulkloop Demo

5.2.1 Using USB Control Center

The Error! Reference source not found. folder contains a Microsoft Visual C# solution to create a Windows a
pplication called USB Control Center. This application is used to download the FX2LP firmware (a hex file) into

the FX2LP chip. After the firmware loads, the FX2LP board automatically detaches itself from USB and then re-
attaches as the device defined by the loaded hex file (ReNumerationTM). If the loaded hex file has custom

Vendor ID (VID) and Product ID (PID) then you need to add these values to the Cypress .inf file.

Cypress Driver: cyusb.sys

PC

bulkloop.hex

Figure 13 USB Control Center Loads Hex Files into the FX2LP Development Board.

Further Reading

For more information about adding custom VID and PID to the .inf file, refer to Appendix E: Adding Custom VID

and PID to the .inf File.

The USB Control Center also has a “Data Transfer” tab that allows you to initiate USB transfers into and out of
the FX2LP DVK to test the bulkloop application or any other firmware you write.

The attached zip file contains a Visual Studio solution (AN65209\USB Control Center) and its compiled binary.
To try it out, follow these steps:

1. Double click on the CyControl.exe file in either the Debug or Release folder (AN65209\USB Control

Center\bin\).

Application Note 17 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

You should see the FX2LP board along with other connected USB devices listed in the left panel. To simplify this
display to show only the FX2LP board, click the Device Class Selection tab in the right panel and uncheck
everything except the Devices served by the CyUSB.sys driver (or a derivative) item.

Then the left panel should look like Figure 14.

Figure 14 USB Control Center Finds the FX2LP Board.

2. Now you are ready to load the FX2LP firmware bulkloop.hex (AN65209\FX2LP Bulkloop Firmware) on to

the FX2LP DVK. Click on the Cypress device entry to highlight it, and then select Program FX2 > RAM. Open

the FX2LP Bulkloop Firmware folder and select the bulkloop.hex file. After the code loads, the FX2LP

Development Kit disconnects itself from USB and reconnects as the device created by the loaded firmware
bulkloop.hex (Figure 15). This is Cypress ReNumeration™ in action—FX2LP has enumerated twice, first as a

code loader and then as the loaded device.

The LED D5 should blink 8 times per second for a Hi-Speed USB attachment, and once per second for a Full
Speed attachment. You can observe this by looking at the toggling frequency of the LED D5 present on the

FX2LP DVK. For Hi-Speed USB attachment, you’ll see the LED blink slowly for a second or so, and then start

blinking quickly. This is because a USB device initially attaches at Full Speed, then negotiates the Hi-Speed

connection with the host. This is one of the many firmware details handled by the Cypress USB frameworks
described in the FX2LP Firmware Development section.

The 7-segment readout present on the FX2LP DVK should light up with the number zero, indicating the number

of packets ready to be transferred back to the host—none have been received and “looped back” yet.

Figure 15 The FX2LP Board Re-appears

Note: Before you load any hex file into the FX2LP DVK, you must first press the Reset button (Error! R
eference source not found., lower left corner) by keeping the “EEPROM ENABLE” switch in “NO
EEPROM” position to reset FX2LP and thereby enable the FX2LP boot loader.

Application Note 18 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

Figure 16 shows the interaction between USB Control Center and the FX2LP Development Board loaded with
the bulkloop.hex file. The bulkloop firmware enumerates as a Full Speed or Hi-Speed device depending on the
PC connection and copies (loops) BULK data it receives from OUT Endpoint 2 into an IN Endpoint 6 buffer for
transmission back to the PC. As the diagram indicates, the endpoints are double-buffered, a feature

demonstrated in this section.

Note: Because USB directions are host-centric, OUT means host to device, and IN means device to host.

The bulkloop firmware also contains the code for useful operations, such as controlling the LEDS and 7-
segment readout on the FX2LP Development Board, and using endpoint interrupts. This code is examined in

detail in the FX2LP Firmware Development section.

cyusb.sys

PC

FX2LP

EP2-OUT EP6-IN

Figure 16 USB Control Center Tests the Bulkloop Firmware

1. Expand the Bulkloop Example tree view in the Control Center to reveal the implemented BULK endpoints
(Figure 17).

Figure 17 Bulkloop Example Device Internals

2. Select the Data Transfer tab. Click on the Bulk out endpoint (0x02) entry in the left-hand panel, and notice

that the Transfer Data button is Transfer Data-OUT. Clicking this button leads to the following:

• 512 bytes (with zero default values) transfer from the PC to the FX2LP DVK.

• LED D3 flickers to indicate the OUT transfer.

• The 7-segment readout increments to 1, indicating one packet has been received over EP2-OUT and loaded

into the EP6-IN endpoint FIFO, ready for transfer to the host.

Application Note 19 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

Figure 18 Successful BULK-OUT Transfer

1. Click the Transfer Data-OUT button again. The PC dispatches a second packet to FX2LP, and the 7-segment

readout increments to 2.

2. Highlight the Bulk in endpoint (0x86) entry. The Transfer button label now indicates -IN. Clicking this

button leads to the following:

• 512 bytes transfer from FX2LP to the host, which it displays as hexadecimal values.

• LED D2 flickers to indicate the IN transfer.

• The 7-segment readout decrements to 1.

3. Click the Transfer Data-IN button again. The second queued packet transfers to the host, and the 7-

segment readout indicates 0 packets waiting. This sequence confirms the double-buffered operation of the

two endpoints.

4. Select the Bulk out endpoint again. Then, position the mouse cursor inside the Text to send box and type
1234. The hex values display in the Data to send box and the Bytes to Transfer box increments for every

digit typed. Click the Transfer Data-OUT button.

5. In the Text to send box, type abcdefg, then click the Transfer Data-OUT button.

6. Select the Bulk in endpoint, and leave the default Bytes to Transfer value of 512 bytes. Click the Transfer

Data-IN button twice to read the two packets of data that was transferred.

Figure 19 Two Packets OUT, Two Packets IN

As Figure 19 demonstrates, a feature of USB is that a USB peripheral always sends the smaller of bytes-

requested (512, in this example) and bytes-available (4 or 7).

5.2.2 Using BULKLOOP_VCS

A second Visual Studio project called Bulkloop_VCS performs streamlined transfers in and out of the FX2LP
Development Board. It continuously sends and receives BULK data while keeping a running total of bytes

transferred. Like the USB Control Center, it displays the device characteristics in the left panel for information.

Unlike the USB Control Center, it automatically sets up and conducts continuous transfers when the Start
button is pressed.

Application Note 20 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

Figure 20 Bulkloop_VCS Window

Before using this application, use the USB Control Center to load the bulkloop.hex file as described in the

previous section. Be sure to press the FX2LP Development Kit RESET button first to enable the FX2LP
bootloader by keeping the “EEPROM ENABLE” switch in “NO EEPROM” position.

5.3 FX2LP Firmware Development

This section explains the steps involved in generating the bulkloop.hex file.

5.3.1 Keil uVision2

The Cypress FX2LP DVK includes a free demonstration version of the Keil uVision2 tools for the 8051. This IDE is
fully featured, but limited in code size to 4096 bytes. Cypress demo projects, such as bulkloop.uv2, fit under

this limit so you can study and modify the code. Larger projects require purchasing the full uVision2 toolset

from Keil.

5.3.2 Cypress USB Firmware Frameworks

In conjunction with the Keil tools, Cypress provides a set of files called the USB Firmware Frameworks to handle
low-level USB details. This approach allows you to concentrate development time on your specific application
code.

When you open the bulkloop.uv2 project, you see the following project files:

Figure 21 bulkloop.uv2 Project Files

• fw.c is the Cypress USB Firmware Frameworks.

For more information on firmware frameworks, refer to Chapter 5 in FX2LP Development Kit User Guide.pdf.

• bulkloop.c is your application. Other Cypress examples may call this code module peripheral.c; it is a good
idea to rename it for your specific project name.

http://www.cypress.com/?rID=14321

Application Note 21 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

• dscr.a51 is an assembly language file containing the data necessary to enumerate the USB device. The file
comprises table data in the form of .db (define byte) statements. You edit this file to customize items such
as VID/PID and descriptive strings for your design.

• USBJmpTb.OBJ is a jump table required by the FX2LP architecture, never requiring modification.

• EZUSB.LIB contains a library of useful FX2LP functions, mostly dealing with I2C communication. The source
code is included with the FX2LP DVK in the Target\Lib\LP subfolder.

main() {

TD_init();

Enable Interrupts

while(1)

 {

 if(GotSUD)

 TD_Poll();

 }}

fw.c

Descriptors

Handle

EP0

dscr.a51

GET_DESCRIPTOR

bulkloop.c

BOOL DR_SetConfiguration(void)

BOOL DR_GetConfiguration(void)

BOOL DR_Set_Interface(void)

BOOL DR_Get_Interface(void)

TD_Init()

{….}

TD_Poll()

{....}

void ISR_EP2inout(void)

void ISR_EP6inout(void)

void ISR_Sof(void)

Figure 22 USB Firmware Framework Structure

Figure 22 shows how the code modules fit together.

Fw.c contains the main function. It performs much of the USB maintenance, such as enumeration, and it calls
specifically-named external functions in the application code (bulkloop.c) whenever customization is required.

Fw.c mostly does not require your modification. After performing various housekeeping steps, it calls an
external function called TD_init, which you provide in bulkloop.c. (The prefix TD stands for “Task Dispatcher”.)
Then it enters an endless loop that checks for arrival of SETUP packets over CONTROL endpoint 0. The loop also

checks for the USB suspend event, but this is not used by the bulkloop application. Every time through the loop,
it calls the external TD_Poll function which you provide in bulkloop.c. In this application the TD_Poll function

does the work of looping PC endpoint data through FX2LP.

Every USB peripheral receives two types of requests over its CONTROL endpoint: enumeration and operational.

Enumeration

When a USB device is attached, the host PC sends multiple GET_DESCRIPTOR requests to discover the device
type and its requirements as part of a process called enumeration. The fw.c code intercepts these requests and

handles them using the values stored in the dscr.a51 file.

An advantage of using the USB Frameworks is that the code has been tested and verified to pass USB “Chapter
9” requirements. Chapter 9 refers to the chapter in the USB Specification that deals with device requests (over

EP0) and their proper responses.

Operational

Wherever the user code is needed, fw.c calls a specifically-named external function with the DR prefix (Device

Request) that you provide in the bulkloop.c file. For a simple application such as bulkloop, there is only one
configuration and one interface, so the two DR_Set-Get function pairs in Error! Reference source not found. s

Application Note 22 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

imply store the Set values sent by the host and echo them back when the host issues the Get requests. For more
complex configurations, you can use these DR calls (“hooks”) to change camera resolutions or route requests
to two different interfaces.

Because bulkloop.c contains a complete template for any USB device, you can use it as the basis for your
custom implementation. The remainder of this section describes the three portions of this file that require user

code to implement the bulkloop application.

5.3.2.1 TD_Init

This function does the following:

• Sets the 8051 clock to 48 MHz.

• Turns off the development board’s four LEDs. LEDs are turned on and off by reading specific memory
locations. This method controls the LEDs without consuming any I/O pins.

• Configures EP2 as a BULK-OUT endpoint and EP6 as a BULK-IN endpoint. Both are double-buffered and use
512 byte FIFOs (Error! Reference source not found.).

• Enables (“arms”) EP2-OUT to receive two packets. The OUT endpoint is armed by writing any value into its
byte count register whose MSB is set. Setting the MSB (called the “SKIP bit”) skips the packet.

• Enables the FX2LP dual auto pointers. These hardware pointers auto-increment for efficient memory-to-
memory byte transfers from the EP2-OUT buffer to the EP6-IN buffer.

• Enables three interrupts: SOF, EP2, and EP6 endpoint interrupts.

5.3.2.2 TD_Poll

TD_Poll is called in an infinite loop residing in fw.c (Error! Reference source not found.). For the bulkloop
application, only two tasks are required:

1. Update the 7-segment readout with the number of packets waiting for transmission to the host. The FX2LP

register EP6CS (Endpoint 6 Control and Status) provides this number in bits 6-4.

Further Reading

For more information on registers, refer to Chapter 15 of the FX2LP Technical Reference Manual.

2. Check the endpoint FIFO flags to determine when it is time to transfer an OUT packet to an IN buffer. When
it is time, move the packet data from the EP2-OUT buffer to the EP6-IN buffer using auto pointers.

To understand how the item 2 transfer decision is made, it is important to understand two points regarding the
FX2LP endpoint FIFO flags:

a) When multiple buffering is used, the FULL and EMPTY flags (of EP2468STAT register) reflect all the buffers,
not just one. Therefore, in the double-buffered case for this example, if one OUT packet is received, the
FULL flag remains unasserted because the second buffer is still available for an OUT transfer. The FULL flag

asserts only when a second packet arrives. Similarly, an IN endpoint EMPTY flag asserts only when both

buffers are empty, ready for the 8051 to fill them with new data.

b) FX2LP updates FIFO flags (of the EP2468STAT register) only after successful receipt or transmission of a
USB packet.

Therefore, a looping transfer occurs when the following two conditions are satisfied:

• EP2-OUT is not empty, AND

• EP6-IN is not full.

http://www.cypress.com/?rID=38232

Application Note 23 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

In other words, EP2 has a packet, and EP6 has room for a packet. Doing the test this way handles any packet
size and takes the double-buffering into account.

5.3.2.3 Interrupt Service Routines

The bulkloop.c file contains ISR functions for every USB interrupt source. A few ISRs set flags for the fw.c code,
and others perform USB enumeration functions. You only need to fill in code for the ISRs that your application

uses.

The following ISR shows how to clear an FX2LP USB interrupt request:

// Setup Token Interrupt Handler

voidISR_Sutok(void) interrupt 0

{

 EZUSB_IRQ_CLEAR();

 USBIRQ = bmSUTOK; // Clear SUTOK IRQ

}

The “0” after the interrupt keyword is the ID for all USB interrupt requests. Two interrupt request flags are

cleared in a particular order: first, the general USB interrupt flag and then the individual USB source flag; in this
example, the “Setup Token Arrived” flag. This ISR is an example of a code “hook”; you can take any action when

a SETUP packet arrives by inserting code into this ISR.

The bulkloop application requires four customized ISRs:

Set_Configuration ISR

The host sets the FX2LP configuration as the last step of its enumeration process. This is a good time to

initialize application hardware. The I2C unit that drives the 7-segment readout is initialized here.

EP2INOUT/EP6INOUT ISR

These IRQs fire when a packet is dispatched from EP6-IN or arrives at EP2-OUT. The ISR code turns on an LED on

the FX2LP Development Board, then sets an inblink (EP6-IN) or outblink (EP2-OUT) variable (in bulkloop.c) to
control how long the LED stays on.

SOF ISR

The SOF ISR serves as a convenient timer, firing every millisecond at Full Speed and every 125 microseconds at
Hi-Speed. The ISR code toggles an LED on the FX2LP Development Board every 500 times through the ISR,

which equates to once per second at Full Speed and 8 times per second at Hi-Speed. The ISR code also
decrements inblink and outblink variables that were set when IN and OUT packets arrived, turning off
indicator LEDs when the counters hit zero.

5.3.2.4 Handling USB Dual Speeds

When a USB 2.0 device comes out of reset it operates at Full Speed. The host then negotiates with the device
using low-level bus signaling to determine its operating speed. FX2LP provides an interrupt to indicate that it

has just switched to Hi-Speed operation as the result of the host-device speed negotiation.

A USB 2.0 device must operate at Full Speed and Hi-Speed. A Hi-Speed USB device provides two sets of

descriptors, one for each speed. Two ISRs take care of designating the proper descriptors depending on speed:

Application Note 24 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

• The ISR_Ures(USB Reset) code designates the Full Speed descriptor as the current speed descriptor, and the
Hi-Speed descriptor as the other speed descriptor. If plugged into a full-speed port, no further action is
required.

• The ISR_Highspeed interrupt service code swaps the current/other descriptor designations—Hi-Speed is

now the current speed and full-speed is the other speed. This dual designation allows Windows to put up this
message if it detects a Hi-Speed device plugged into a Full Speed port:

Figure 23 Windows Knows When a High-Speed Device Can Perform Better

This nontrivial bit of USB housekeeping is an example of what the Firmware Frameworks does for you. The dual

descriptors and descriptor swapping code is written for you. All you need to do is fill in the descriptor fields

unique to your application.

5.3.3 Building the Bulkloop Project

In the FX2LP Bulkloop Firmware folder, double-click the bulkloop.uv2 file. This opens the uVision2 IDE and

loads the bulkloop project. To compile and link the project, click the Rebuild All Target Files button.

Figure 24 uVision2 IDE

This creates the bulkloop.hex file you downloaded in previous sections.

Note the following when installing Keil uVision2:

• Sometimes, files unzipped from a web download install as read-only. Right-click on the folder, select
“Properties”, and uncheck the “Read-only” box if selected.

• The final Keil build step is automatically to run a program called hex2bix.exe, which converts the Keil
output into a iic file. The location of this file is coded into the project, so moving or installing the Keil tools

may break the path. A simple remedy is to include the hex2bix.exe file in the Keil project folder, and invoke
the utility without specifying a path. (This is done in the companion code to this application note.) You can

locate the path by right-clicking the top file in the Keil project window (default name is “Target 1”), selecting

“Options…”, and then selecting the “Output” tab. The path should look like this:

Figure 25 Path to the hex2bix Utility

Application Note 25 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

5.4 GPIF Designer

The bulkloop example handles everything on-chip, where the 8051 checks flags, moves bytes between endpoint
FIFOs, and updates the development kit status indicators (LEDs and 7-segment readout). Most FX2LP designs

do more than this, transporting data between FX2LP and outside peripherals, such as disk drives or image
sensors. For this purpose, the GPIF provides a fast and flexible interface to outside systems. This section

highlights AN66806 - Getting Started with EZ-USB FX2LP GPIF, which gives step-by-step instructions for
using the Cypress GPIF Designer tool.

The first step in a GPIF design is to fill in a block diagram with the interface signals, as Figure 26 shows.

Figure 26 GPIF Designer Block Diagram Tab

The GPIF has six Control (CTL) outputs and six Ready (RDY) inputs that you can rename in the block diagram by
right-clicking in the RDY or CTL text blocks. Your names propagate through GPIF Designer, appearing as choices

for state machine decision points and waveform names.

Figure 27 GPIF Waveform Entry Creates States

Figure 27 shows a GPIF Designer waveform entry screen. In this simple example, the internal 48-MHz clock is

divided by 2 and 4, and output on the renamed CTL0 (CLKby2) and CTL1 (CLKby4) pins. The vertical dotted lines
show the clock edges on which transitions can occur; these can be set to rising or falling edges. To create a
transition, you click in the desired waveform on a clock edge. This toggles the waveform and inserts a red
triangle to mark the transition point. You can delete these triangles or drag them to different clock edges, and
set logic levels directly to 1 or 0 with mouse clicks.

http://www.cypress.com/?rID=12937

Application Note 26 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

FX2LP Development Tools

As you define waveform transitions, GPIF Designer automatically creates states in the top line—in this example,
the four states S0 through S3. This waveform is designed to repeat endlessly as it is designed to produce the
clock outputs. This is accomplished by branching from state 3 back to state 0. Branching to a state is done by
inserting a decision point in the Status line—click on the dotted clock line at the beginning of the decision state.

GPIF Designer inserts a diamond to signify the decision state. Right-clicking this diamond brings up a dialog box
that allows you to create a logic equation using two variables and three logical operators (AND, OR, XOR) for the
branch condition. An unconditional branch is created by selecting the same state as destination for if condition
check and for else condition.

Further Reading

For more information on GPIF, refer to Chapter 10 of the FX2LP Technical Reference Manual.

For information on interfacing RAM to GPIF of FX2LP, refer to Interfacing SRAM with FX2LP over GPIF -

AN57322.

http://www.cypress.com/?rID=38232
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=39392

Application Note 27 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

The Windows Side

6 The Windows Side

Running the Bulkloop Demo shows how to use the USB Control Center and BULKLOOP_VCS Windows

applications to test the bulkloop hex file created by the Keil tools. This section gives an overview of tools from
Cypress and others that can be used to create Windows applications that communicate with FX2LP-based

devices.

Driver: cyusb.sys, cyusbfx1_fx2lp.inf

Cypress Application Library: CyUSB.dll

PC

Figure 28 Windows .NET Apps Communicate with FX2LP using a Cypress Driver and Library

6.1 Cypress USB Driver

The Cypress USB driver (CyUSB.sys) is a robust high-performance Windows driver used for host

communication with a USB-connected target. This driver is installed on the host PC as part of the EZ-USB FX2LP

DVK installation, and in the accompanying zip file in the Windows Driver folder. The driver comes in binary

form and can be distributed with your FX2LP-based devices.

• CyUSB.sys is a kernel mode USB function driver, which is capable of communicating with any USB 2.0

compliant devices. The driver is general-purpose, compatible with primitive USB commands, but does not
implement higher-level commands specific to USB device classes.

• The driver is ideal for communicating with a vendor-specific device from a custom USB application or for

sending low-level USB requests to any USB device for experimental or diagnostic applications.

• Operating systems/platforms supported by the driver are Windows XP, Windows Vista, and Windows 7, on

both 32- and 64-bit versions.

If you modify the .inf file, for example, to include your company’s VID and/or PID, or to include custom-
descriptive text strings, Cypress recommends that you obtain “WHQL” certification from Microsoft (WHQL
stands for “Windows Hardware Quality Labs”.) With this Windows Logo certification, you do not get a warning

message when the driver installs. Appendix E: Adding Custom VID and PID to the .inf File shows how to add a

custom VID/PID to the inf file.

Further Reading

For more information on CyUSB.sys, refer to CyUSB.pdf present in the Cypress Suite USB\Driver folder (after
Cypress Suite USB installation).

6.1.1 Driver/Library Alternatives

Other Windows drivers and libraries are available. WinUSB from Microsoft (details at the msdn site) comprises a
kernel-mode driver (Winusb.sys) and a user-mode dynamic link library (Winusb.dll) that exposes WinUSB
functions. By using these high-level functions, you can manage USB devices with user-mode software.
Winusb.sys is supported on Windows XP, Windows Vista, Windows 7, and Windows 8. Like the Cypress driver, it

requires an accompanying .inf file for installation.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff540196(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540046(v=vs.85).aspx#winusb
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540046(v=vs.85).aspx#winusb

Application Note 28 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

The Windows Side

Note: WinUSB.sys does not support ISOCHRONOUS transfers, while the Cypress driver supports all USB
transfer types.

Note: Linux and Mac users can investigate LIBUSB, a suite of open source user-mode USB routines.
Details can be found in the Libusb-1.0 API Reference.

In Linux machines, the CyUSB Suite for Linux software (provided as part of FX3 SDK for Linux and can be used
for FX2) enables you to download firmware images to FX2/FX3 devices and test the various interfaces on the
device. See cyusb_linux_user_guide.pdf available in the FX3 SDK for Linux installation folder:
fx3_sdk_v1.3_linux\cyusb_linux_1.0.4\cyusb_linux_1.0.4\docs. This document describes how to install the

software, download firmware to FX2/FX3, test Vendor Extensions, BULK OUT/IN transfers, and ISOCHRONOUS

OUT/IN transfers. The CyUSB Suite for Linux - Programmers Reference Manual
(cyusb_linux_programmers_guide.pdf available in the same folder), describes the cyusb library for Linux and

how to build and integrate user-written applications with the library”

FX2LP can also be programmed to be compliant with a standard Windows class, for example Human Interface
Device (HID), Communications (COMM) device or Mass-Storage (MSC) device. The Cypress web site has example

FX2LP programs for these common classes. The advantage of conforming to a Windows class is that no driver

installation is required when the device is first plugged in—the drivers are part of Windows.

6.2 Cypress Libraries

Figure 29 Detailed View of How Cypress Libraries Communicate with Applications

The Bulkloop_VCS application is an example of the software architecture used for any Windows-to-FX2LP
communication using the Cypress .NET library. A C# language program makes library calls that access the

Cypress driver to communicate with FX2LP (see Figure 28). The CyUSB.dll library supports the Microsoft .NET
Languages. Cypress also provides a C++ class library called CyAPI.lib. Both libraries are available with the
Cypress Suite USB installation.

Just as the Cypress USB Firmware Frameworks simplifies code development at the FX2LP level, these libraries
simplify coding at the Windows level. The software model (based on CyUSB.dll) employs the following three

elements:

http://libusb.sourceforge.net/api-1.0/
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=34870

Application Note 29 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

The Windows Side

• The USBDeviceList class creates a list of all attached USB devices. The constructor can filter the list for a
single device class, for example HID or MSC, or to devices served by the Cypress driver.

• Device List members are CyUSBDevice class instances.

• CyUSBDevice classes expose one or more CyUSBEndPoints, through which data transfers are performed.

Communicating with USB devices using this high-level model is a great improvement over multiple Win32 API
calls such as DeviceIOControl.

An excellent way to gain familiarity with the Cypress library is to open the Bulkloop_VCS solution using

Microsoft Visual C# Express edition, and inspect the code.

Further Reading

For more information on developing host applications, refer to the application note, AN70983 - Designing a

Bulk Transfer Host Application for EZ-USB® FX2LP™/FX3™.

For more information on .NET dll library, refer to CyUSB.NET.pdf present in the folder Cypress Suite
USB\CyUSB.NET (after Cypress Suite USB installation). For more information on CyAPI.lib, refer CyAPI.pdf

present in the folder Cypress Suite USB\CyAPI.

http://www.cypress.com/?rID=53165
http://www.cypress.com/?rID=53165

Application Note 30 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Summary

7 Summary

The Cypress FX2LP is designed to meet your USB 2.0 Hi-Speed design requirements. Cypress provides an

extensive suite of support collateral to help with each step of your design cycle. This application note first
introduced FX2LP, then introduced Cypress hardware, firmware, and software tools by stepping through the

design, creation and testing of a BULK transfer example. This example can serve as a basis for your custom
application.

About the Author

Name:

Rama Sai Krishna

Title: Application Engineer Senior

Application Note 31 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix A: FX2LP Development Kit (DVK)

8 Appendix A: FX2LP Development Kit (DVK)

The CY3684EZ-USB FX2LP Development Kit is a complete development resource. It provides a platform to

develop and test custom projects. The development kit contains collateral materials for the firmware,
hardware, and software aspects of a design. Error! Reference source not found. shows the FX2LP DVK

Development Board components.

Figure 30 FX2LP DVK Development Board Components

The FX2LP DVK is an excellent debugging platform for FX2LP. The board can load code images from USB (as in
this application note) or the code can be programmed into an onboard EEPROM.

When developing hardware for USB 2.0 Hi-Speed devices, board layout and design are critical to the success of
the project. To help developers avoid common layout errors, Cypress provides several resources to help design

a new board. Application notes AN1168 and AN15456 give design guidelines for FX2LP. In addition, the
hardware subdirectory of the FX2LP DVK installation contains the FX2LP development kit schematic, the BOM

for the development board, and the development board layout and design files.

8.1 Firmware Example Projects

As explained in the FX2LP Firmware Development section, the FX2LP DVK provides a USB Firmware

Frameworks library that satisfies the Chapter 9 compliance requirements of the USB 2.0 specification for high-

http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=12982
http://www.cypress.com/?rID=12956

Application Note 32 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix A: FX2LP Development Kit (DVK)

speed devices. The USB Frameworks simplify and accelerates custom firmware development by using Cypress
code for common operations, such as FX2LP chip initialization, USB standard device request handling, and USB
suspend-resume power management. USB Firmware Frameworks also provides function hooks and firmware
examples, easing the firmware development process. You can write the USB descriptor table and code to

implement the desired functionality without worrying about low-level USB details.

After installing the CY3684EZ-USB FX2LP Development Kit the firmware directory contains the examples
shown in Table 4. These examples can be used as a reference or used as the basis for custom FX2LP-based
products.

Table 4 Description of FX2LP Firmware Examples

S.No Firmware

Example

Description

1 hid_kb Emulates a HID-class keyboard using the buttons and 7-segment display on the DVK

board.

2 Bulkloop A bulk loopback test that exercises the EZ-USB bulk endpoints. It loops back EP2OUT to

EP6IN and EP4OUT to EP8IN, and updates Development Board indicators.

3 Bulkext A bulk loopback test that uses external RAM. Data is copied from an OUT endpoint buffer
to external RAM on the DVK board and then back to the IN endpoint buffer. It loops back

EP2OUT to EP6IN and EP4OUT to EP8IN.

4 Bulksrc Endless providers and consumers of BULK data for testing. It can be driven using the
CyConsole or CyBulk. EP2OUT and EP4OUT accept all BULK packets. EP6IN always

returns a 512-byte packet when operating at Hi-Speed and 64 bytes when operating at

Full Speed. Based on buffer availability in EP8IN, the most recent packet of EP4OUT is

written to EP8IN.

5 dev_io Source files to build simple development board I/O sample. This software demonstrates

how to use the buttons and LEDs on the EZ-USB development kit.

6 EP_Interru

pts

Bulk loopback firmware using endpoint interrupts.

7 extr_intr External interrupt handling using INT0, INT1, INT4, INT5, and INT6.

8 ibn Bulk loopback of EP2OUT to EP6IN and EP4OUT to EP8IN using the IBN (In Bulk NAK)

interrupt to initiate the transfer.

9 LEDCycle Use of the general-purpose indicator LEDs (D2, D3, D4, D5) on the DVK.

10 Pingnak Bulk loopback of EP2OUT to EP6IN andEP4OUT to EP8IN using the PING NAK interrupt to

initiate the transfer.

11 iMemtest Tests on-chip RAM.

12 vend_ax Shows how to implement vendor-specific commands.

USB Firmware Frameworks uses the EZ-USB library (EZUSB.LIB), which implements functions that are common

to many firmware projects. These functions need not be modified and are, therefore, provided in library form.

However, the kit includes the source code for the library in the event that you need to modify a function or if
you just want to know how something is done. Detailed information about the EZ-USB library (section 5.4) and
firmware framework (chapter 5) is available in the ‘CY3684 DVK Kit_Guide’. This library is included in DVK
under the ‘Target\Lib\LP’ folder. To help customers design their applications faster with a wide range of

Cypress Hi-Speed products, a comprehensive list of all USB Hi-Speed Code Examples are available. Details on
other USB High-Speed Devices, Kits, SDKs, Application Notes and Reference Designs are available below.

http://www.cypress.com/?rID=14321
http://www.cypress.com/?docID=37298
http://www.cypress.com/?rID=101782

Application Note 33 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix A: FX2LP Development Kit (DVK)

Note: These software resources are continuously improved. Therefore, Cypress recommends
downloading the latest software from the Cypress website.

http://www.cypress.com/?id=190&rtID=119

Application Note 34 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix B: Additional USB Hi-Speed Devices from Cypress

9 Appendix B: Additional USB Hi-Speed Devices from Cypress

The Cypress USB Hi-Speed peripherals family includes the following additional devices:

• AT2LP: Cypress’s EZ-USB® AT2LP™ (CY7C68300C/301C/320C) implements a fixed-function bridge between
one USB port and one or two ATA- or ATAPI-based mass storage device ports. The PATA interface on AT2LP
enables the use of hard disk drives (HDD), compact flash, and solid state drives (SSD) in your design. The

AT2LP is perfect for mass storage type applications and enables quick time to market without custom
firmware. AT2LP supports all ATA/ATAPI-6 compliant mass storage devices.

• NX2LP-Flex: Cypress’s EZ-USB NX2LP-Flex™ (CY7C68033/34) is a low-power programmable USB to SLC
NAND controller. Its programmability allows designers to include special features in the controller along
with NAND device support, an advantage over fixed controllers. The hardware ECC engine present in NX2LP-

Flex supports 1-bit error correction and 2-bit error detection.

• SX2: The EZ-USB SX2 (CY7C68001) is a programmable device designed to work with any external master,

such as standard microprocessors, DSPs, ASICs, and FPGAs to enable USB 2.0 support for any peripheral
design. SX2 has a built-in USB transceiver and serial interface engine (SIE), along with a command decoder

to send and receive USB data. The controller has four endpoints that share a 4KB FIFO space for maximum

flexibility and throughput. SX2 has three address pins and a selectable 8- or 16- bit data bus for command
and data input or output.

• FX2LP18: MoBL-USB FX2LP18 (CY7C68053) operates at 1.8 V, making it suitable for use in low-power

handheld devices. AN6076 lists the differences between FX2LP and FX2LP18.

http://www.cypress.com/?id=190&source=header
http://www.cypress.com/?id=191
http://www.cypress.com/?id=196
http://www.cypress.com/?id=4242
http://www.cypress.com/?mpn=CY7C68001-56LTXC
http://www.cypress.com/?rID=13637
http://www.cypress.com/?rID=12718

Application Note 35 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix C: Third-Party Development Kits and SDKs

10 Appendix C: Third-Party Development Kits and SDKs

1. FPGA + FX2LP board from Opal Kelly:

More details of this board can be found in the following location:

http://www.opalkelly.com/products/xem6010/

Features:

• Hi-Speed USB 2.0 interface (Cypress FX2LP - CY68013A) for downloading and control

• Xilinx Spartan-6 (XC6SLX45-2FGG or XC6SLX150-2FGG)

• 32-Mib serial flash (Numonyx M32P25)

• 128-MiByte DDR2 (Micron MT47H64M16HR)

• Small form-factor—smaller than a credit card at 75 mm x 50 mm x 15.9 mm (2.95" x 1.97" x 0.63")

• Self-powered by external DC source

• Multi-PLL, multi-output clock generator (Cypress CY22393).

2. FPGA + FX2LP board from ZTEX:

More details of these boards can be found in the following location:

http://www.ztex.de/usb-fpga-1/

Features of one such board from ZTEX:

• Cypress CY7C68013A EZ-USB FX2LP Microcontroller

• Hi-Speed (480 Mbps) USB interface

• Xilinx Spartan 3 XC3S400 FPGA

• 60 general purpose I/Os (GPIO)

• 20 special I/Os (SIO)

• 128-kb EEPROM (for example, for firmware)

• Flash memory (optionally)

10.1 Third-party SDKs

ZTEX provides a SDK, which works with FX2LP-based boards and also provides JAVA-based APIs to help

development of the host software. For more details, visit http://www.ztex.de/firmware-kit/.

http://www.opalkelly.com/products/xem6010/
http://www.opalkelly.com/products/xem6010/
http://www.ztex.de/usb-1/usb-1.0.e.html
http://www.ztex.de/usb-fpga-1/
http://www.ztex.de/firmware-kit/

Application Note 36 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix D: Application Notes and Reference Designs

11 Appendix D: Application Notes and Reference Designs

11.1 Application Notes

• AN15456 - Guide to Successful EZ-USB® FX2LP™ and EZ-USB FX1™ Hardware Design and Debug

This application note identifies possible USB hardware design issues, especially when operating at high-speed.

It also facilitates the process of catching potential problems before building a board and assists in the
debugging when getting a board up and running.

• AN50963 - EZ-USB® FX1™/FX2LP™ Boot Options

This application note discusses the various methods to download firmware in to FX1/FX2LP.

• AN66806 - EZ-USB® FX2LP™ GPIF Design Guide

This application note describes the steps necessary to develop GPIF waveforms using the GPIF Designer.

• AN61345 - Implementing an FX2LP™- FPGA Interface

This application note provides a sample project to interface an FX2LP with an FPGA. The interface implements

Hi-Speed USB connectivity for FPGA-based applications such as data acquisition, industrial control and
monitoring, and image processing. FX2LP acts in Slave-FIFO mode and the FPGA acts as the master. This
application note also gives a sample FX2LP firmware for Slave-FIFO implementation and a sample VHDL and

Verilog project for FPGA implementation.

• AN57322 - Interfacing SRAM with FX2LP over GPIF

This application note discusses how to connect the Cypress CY7C1399B SRAM to FX2LP using the General
Programmable Interface (GPIF). It describes how to create read and write waveforms using GPIF Designer. This
application note is also useful as a reference to connect FX2LP to other SRAMs.

• AN58009 - Serial (UART) Port Debugging of FX1/FX2LP Firmware

This application note describes the code needed in the FX2LP firmware for serial debugging. This code enables
the developer to print debug messages and real time values of variables in a PC terminal program or to capture
data in a file using the UART engine in FX2LP.

• AN42499 - Setting Up, Using, and Troubleshooting the Keil Debugger Environment

This application note is a step-by-step beginner's guide to using the Keil Debugger. This guide covers the serial
cable connection from PC to SIO-1/0, the monitor code download, and required project settings. Additionally, it

gives guidelines to start and stop a debug session, set break points, step through code, and solve potential

problems.

• AN4053 - Streaming Data through Isochronous/Bulk Endpoints on EZ-USBR FX2 and EZUSB FX2LP

This application note provides background information for a streaming application using the EZ-USB FX2 or the
EZ-USB FX2LP part. It provides information on streaming data through BULK endpoints, ISOCHRONOUS

endpoints, and high bandwidth ISOCHRONOUS endpoints along with design issues to consider when using the
FX2/FX2LP in high-bandwidth applications.

• AN58069 - Implementing an 8-Bit Parallel MPEG2-TS Interface Using Slave FIFO Mode in FX2LP

This application note explains how to implement an 8-bit parallel MPEG2-TS interface using the Slave FIFO
mode. The example code uses the EZ-USB FX2LP at the receiver end and a data generator as the source for the
data stream. Hardware connections and example code are included.

http://www.cypress.com/?rID=12956
http://www.cypress.com/?rID=34253
http://www.cypress.com/?rID=12937
http://www.cypress.com/?rID=43046
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=39786
http://www.cypress.com/?rID=12960
http://www.cypress.com/?rID=12967
http://www.cypress.com/?rID=39714

Application Note 37 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix D: Application Notes and Reference Designs

• AN58170 - Code/Memory Banking Using EZ-USB

The EZ-USBFX2 family of chips contains an 8051 core. The 8051 core has 16-bit address lines and is able to
access 64KB of memory. However, some applications require more than 64KB. This application note describes

methods of overcoming this 64KB boundary.

• AN1193 - Using Timer Interrupt in Cypress EZ-USB FX2LP Based Applications

This application note helps EZ-USBR FX2LP firmware developers to use timer interrupts in their applications.

• AN63787 - EZ-USB® FX2LP™ GPIF and Slave FIFO Configuration Examples using 8-bit Asynchronous
Interface

This application note discusses how to configure the General Programmable Interface (GPIF) and slave FIFOs in

EZ-USB FX2LP in both manual mode and auto mode to implement an 8-bit asynchronous parallel interface.
This application note is tested with two FX2LP development kits connected back-to-back; the first one

operating in master mode and the second operating in slave mode.

• AN61244 - Firmware Optimization in EZ-USB

This application note describes firmware optimization methods in EZ-USB. Some of these methods are
common to any processor and some are specific to the 8051 core of EZ-USB FX2LP.

• AN74505 – EZ USB FX2LP - Developing USB Application on MAC OS X using LIBUSB

This application note describes a host application built on the MAC OS platform that uses libusb. The host

application (Cocoa application) communicates with the BULK IN and BULK OUT endpoints ofFX2LP, using the
interfaces provided by the APIs of libusb. This host application implements the transfer with devices that pass

the particular VID/PID (=0x04B4/0x1004) identification.

• AN58764 - Implementing a Virtual COM Port in FX2LP

This application note explains how to implement a virtual COM port device using the standard Windows driver

in FX2LP. This information helps to migrate from UART to USB.

• AN45471 - Vendor Command Design Guide for FX2LP

This application note demonstrates how to code USB vendor commands to perform specific product. In
addition, the note explains how to use the Cypress CyConsole utility to issue vendor commands.

Reference Designs

Several reference designs of FX2LP for popular applications are available. The reference designs include
demonstration source code, reference schematics, and a BOM, where appropriate, for the design.

The reference designs available on the Cypress website are:

• CY4661 - External USB Hard Disk Drives (HDD) with Fingerprint Authentication Security

The CY4661 reference design kit from Cypress and UPEK provides customers with a turnkey solution for an
external USB hard disk drive (HDD), with fingerprint authentication, and security to protect and authenticate
data. The reference design uses UPEK's Touch Strip Fingerprint Authentication Solution (TCS3 swipe
fingerprint sensor and TCD42 security ASIC).

• FX2LP DMB-T/H TV Dongle reference design

http://www.cypress.com/?rID=40118
http://www.cypress.com/?rID=12919
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=43047
http://www.cypress.com/?rID=59674
http://www.cypress.com/?rID=40248
http://www.cypress.com/?rID=34485
http://www.cypress.com/?rID=14410
http://www.cypress.com/?rID=37775

Application Note 38 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix D: Application Notes and Reference Designs

This reference design kit is based on the Cypress FX2LP and Legend Silicon’s chipset. A captured and
demodulated RF signal converted to an MPEG2 TS stream by the Legend Silicon chipset is sent to the PC
through an FX2LP.The PC plays these streams using a media player. This is a complete design, including all
required files.

Application Note 39 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix E: Adding Custom VID and PID to the .inf File

12 Appendix E: Adding Custom VID and PID to the .inf File

The Bulkloop firmware example uses VID 0x4B4 and PID 0x1004. These values are included in the

cyusbfx1_fx2lp.inf file that accompanies this application note. If you change the VID and PID values in your
FX2LP firmware project and if they are not already listed in the .inf file, then you need to add those values to

allow your device to be recognized by Cypress development tools such as the USB Control Center. The
following steps show how to add custom VID and PID values to cyusbfx1_fx2lp.inf.

Open cyusbfx1_fx2lp.inf file. Because this is a text file, you can use any text editor such as WordPad. Add your
custom VID and PID as shown in Figure 31 and Figure 32. The steps shown in these figures assume the custom
VID is 0x4B4 and PID is 0x1005. Note that these steps are shown for a Windows XP, 32-bit platform.

Figure 31 Adding Custom VID and PID to Cyusb.inf

Figure 32 Adding custom VID and PID to Cyusb.inf

After making these changes, connect the FX2LP Development Board to a PC and download your firmware
image (.hex file), which has VID 0x4B4 and PID 0x1005. When the driver installer asks for a driver location, you
point it to the modified cyusbfx1_fx2lp.inf file, binding it to CyUSB.sys. After FX2LP is bound to CyUSB.sys, it
will appear on the left panel of the Control Center as Figure 33 shows. Now, you can perform data transfers

using your custom VID and PID using the Control Center.

Application Note 40 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Appendix E: Adding Custom VID and PID to the .inf File

Figure 33 Custom FX2LP device listed in USB Control Center

Application Note 41 of 42 001-65209 Rev.*I

 2021-03-19

Getting Started with FX2LP™

Revision history

Revision history

Document

version

Date of release Description of changes

** 2010-11-24 New application note.

*A 2011-04-12 Updated template according to current Cypress standards.

Removed references to obsolete documents.

*B 2012-10-10 Re-written the application note.

*C 2013-04-22 Added Table 2 to list all the available design resources

Added a section to list popular applications of FX2LP

Added “Before You Start” and “About the Design” sections

Restructured the entire application note

Added Appendices A, B, C, D, and E.

*D 2013-12-11 Rewrote the entire application note for better clarity.

*E 2015-01-27 Included details on CyUSB Suite for Linux

Removed reference to obsolete Specs

Added link to USB Hi-Speed Code Examples

Updated template

Sunset review

*F 2017-04-19 Updated logo and copyright

*G 2017-07-19 Added the More code examples section.

*H 2018-08-17 Added reference to KBA222479 in the “Interfacing FPGA/ASIC using

Slave FIFO” section.

Updated Sales page.

*I 2021-03-17 Updated to Infineon template.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-03-19

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this

document?

Go to www.cypress.com/support

Document reference

001-65209 Rev.*I

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.cypress.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Bulkloop_FX2LP Project
	1.1.1 VS_Control Center
	1.1.2 Bulkloop_VCS
	1.1.3 Windows Driver and Library

	2 USB 2.0
	3 FX2LP Introduction
	3.1 FX2LP Features
	3.1.1 USB Interface
	3.1.2 Parallel interfaces
	3.1.2.1 Slave FIFO
	3.1.2.2 General Programmable Interface

	3.2 Serial interfaces
	3.3 CPU and Memory
	3.3.1 8051
	3.3.2 Boot Options
	3.3.2.1 Package Choices

	3.4 Example Applications of FX2LP
	3.4.1 Interfacing FPGA/ASIC using Slave FIFO
	3.4.2 Further Reading
	3.4.3 Booting an FPGA from FX2LP
	3.4.4 Further Reading

	4 Cypress Design Resources
	5 FX2LP Development Tools
	5.1 FX2LP Development Board
	5.2 Running the Bulkloop Demo
	5.2.1 Using USB Control Center
	5.2.2 Using BULKLOOP_VCS

	5.3 FX2LP Firmware Development
	5.3.1 Keil uVision2
	5.3.2 Cypress USB Firmware Frameworks
	5.3.2.1 TD_Init
	5.3.2.2 TD_Poll
	5.3.2.3 Interrupt Service Routines
	5.3.2.4 Handling USB Dual Speeds

	5.3.3 Building the Bulkloop Project

	5.4 GPIF Designer

	6 The Windows Side
	6.1 Cypress USB Driver
	6.1.1 Driver/Library Alternatives

	6.2 Cypress Libraries

	7 Summary
	8 Appendix A: FX2LP Development Kit (DVK)
	8.1 Firmware Example Projects

	9 Appendix B: Additional USB Hi-Speed Devices from Cypress
	10 Appendix C: Third-Party Development Kits and SDKs
	10.1 Third-party SDKs

	11 Appendix D: Application Notes and Reference Designs
	11.1 Application Notes

	12 Appendix E: Adding Custom VID and PID to the .inf File
	Revision history

